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1. Foreword 
 
Crack bridging (e.g., from stitches or pins) and friction have profound and potentially 
very useful effects on delamination crack growth, controlling growth rates (damage 
levels) and the energy absorbed.  However, the implications for structural design 
principles remain quite obscure.  The difficulty is that no simple analogue of crack 
toughness, which underpins static structural design, exists for dynamic cases with large 
scale bridging effects.  The external shape of the structure and the loading configuration 
dictate stress waves, frictional contact zones, and crack tip stress intensity factors in a 
way that is very difficult to approach, other than by brute, case specific numerical 
simulation.  The problem is compounded by the reality of multiple cracking, a 
complexity that is rarely entertained in laboratory fracture specimen design.  Physically 
sound materials models for the important structural problem of multiple, nonlinear 
cracking in laminated structures with large-scale bridging due to friction and 
reinforcement remain, in spite of the technological importance of these systems, 
undeveloped. 

We are conducting a program of basic research to develop engineering principles for 
dealing with dynamic, multiple cracking damage in laminated structures, including large 
scale crack bridging, due to through-thickness reinforcement, and friction.  Bridging and 
friction will be treated by materials models at the smallest scales relevant to the 
mechanisms.  By reference to the fundamentals of the dynamic growth of single cracks, 
which is already largely understood (although some interesting mysteries remain), simple 
approaches will be formulated to calculating the development of distributed delamination 
cracks in laminated structures with non-trivial geometry and general loading conditions.  
To treat large scale bridging effects, structural sub-component models must support 
dimensions of ~ 100 mm or more.  Our approach must bridge scales ranging from this 
characteristic size down to that of micromechanisms (friction, fiber bridging) within the 
process zone of a single crack.  By doing this, a direct link will be established between 
structural performance and materials design. 

Our research aims to create a systematic method for simplified design of laminated 
engineering structures, which will impact the design and performance of all lightweight 
military vehicles and structures.  Newly gained understanding will point to significant 
improvements in impact and ballistic resistance via materials and structural design. 

The program is being conducted with formal collaborations with universities in the U.S. 
and Italy, with arrangements pending with universities in Australia and Denmark.  All 
these collaborations involve Ph.D. candidate students, including extended stays for 
students at Rockwell Scientific. 
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4. Statement of the Problem Studied 
 
In this three-year program of basic research we shall: 

(i) formulate and solve multiple delamination problems, by methods applicable to 
reasonably complex structures and loading, that correctly describe fundamental 
aspects of dynamic delamination crack growth in the presence of large scale 
bridging and friction; 

(ii) establish engineering principles for modeling and designing laminated structures 
with energy absorption optimized by tailoring crack bridging and friction 
mechanisms. 

The main thrust of our work will be theoretical.  Use will be made where possible of data 
in the literature.   
 
Our objectives are to: 
 

Conduct basic research into the development of distributed dynamic delamination 
cracks in laminated structures with non-trivial geometry and general loading 
conditions and in the presence of friction and bridging due to through-thickness 
reinforcement such as stitches or rods. 

Develop engineering principles for dynamic, multiple cracking damage in laminated 
structures, including large scale crack bridging and friction. 

Create a systematic method for simplified design of laminated engineering structures 
containing through-thickness reinforcement, which will shorten the design cycle for 
all lightweight military vehicles and structures. 

Indicate means for achieving significant improvements in impact and ballistic resistance 
via materials and structural design, especially via manipulation of friction or the bridging 
effects of through-thickness reinforcement.
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5. Summary of the Most Important Results 
 
Our objective in the first year is to formulate multiple delamination problems in a number 
of cases that will be widely representative of common structural applications.  
Formulations are sought, using approximations where they are valid and helpful, that 
decouple extrinsic, shape and load dependent factors from the intrinsic nonlinear material 
response of the damaged laminate.  Large scale bridging conditions of friction and 
through-thickness reinforcement will be included. 

Three modeling approaches are of possible interest, viz., 1) beam or plate level 
approximations; 2) weight function methods; and 3) computational methods.  In the first 
year, selected problems will being solved in the static limit, building on our prior related 
work (Andrews et al., 2006; Yang and Cox, 2005).  Dynamic solutions are also being 
formulated and solved. 

Mixed Mode Cohesive Models – Interacting Failure Mechanisms 
 
In work performed under other programs, Qingda Yang and Brian Cox have formulated 
high fidelity simulations of multiple delamination events under static loading in 
laminated composites, using cohesive zone representations of the nonlinear processes 
associated with material failure in the crack tip region.  While a vast and long literature 
exists on delamination mechanics (see our full review in the Introduction to (Yang and 
Cox, 2005)), our work presents important new advances that make a big difference to 
whether the outcome will be truly high in fidelity.  In our new ARO program, we have 
extended our formulation to include multiple mechanisms of damage and shown that the 
interaction between different mechanisms can dominate damage evolution. 
 
Key points we have contributed, including prior work, which we list here for 
completeness in presenting our point of view, and work done in our new program, are as 
follows. 

1. Cohesive models of dominant cracks give a physically consistent description of 
damage initiation (requiring no assumed initial defect), the progression of damage to a 
traction-free crack, and the propagation of the crack towards the limit of linear elastic 
fracture mechanics.  All of these stages of crack development are contained in a single, 
unifying model – the cohesive traction law. 

2. Linear elastic fracture mechanics (LEFM), e.g., as embodied in the virtual crack 
closure technique, is very limited in its ability to generate high fidelity simulations of 
damage evolution.  There remains, in our opinion, no rational method of predicting 
damage initiation at locations of elastic stress singularity using LEFM; one always runs 
into the vexed questions of what initial defect might exist and how stress singularities are 
to be treated computationally.  These difficulties are, in principle, completely overcome 
in a cohesive zone model, which provides a physically valid depiction of nonlinear 
material behavior prior to crack formation; and introduces a length scale, the cohesive 
zone length, which plays an essential role in developing physically appropriate, 
nonsingular stress representations. 
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3. The initiation of damage and the evolution of the crack are complex processes, 
involving continuous changes in the shape of the crack and the mode ratio, which varies 
strongly around the crack front.  A high-fidelity simulation must be allowed to predict the 
crack shape evolution – it cannot be specified a priori.  Shape and mode ratio 
characteristics follow as computational results, computed in real time during a 
simulation, naturally and very easily from a mixed mode cohesive zone representation. 

4. The cohesive zone has a characteristic length that can be predicted a priori using 
analytical results, which we and our collaborators have previously derived (Cox and 
Marshall, 1994; Massabò and Cox, 1999).  We have now assembled the prior results into 
simple rules for establishing the maximum computational mesh size for simulations 
(Yang and Cox, 2005).  If the mesh is too coarse (elements larger than the cohesive zone 
length), mesh-independence cannot be achieved.  Almost all prior literature on cohesive 
zones in delamination based on plate elements (or similar 2D elements) fails to meet this 
criterion!  Fortunately, the progression of computational power makes it feasible to use 
elements that are properly sized; the motivation for using plate elements is not as 
compelling as it has been in the past. 

5. For components of complex shape (e.g., containing cut-outs), strong through-
thickness stresses provide a further reason for avoiding plate elements. Three-
dimensional solid finite elements are preferable.  Once again, advances in computer 
power make using solid elements feasible. 

5. (New work in this program)  The interaction between different damage modes can 
be very strong.  High fidelity simulations require the treatment of dominant delamination 
cracks, distributed matrix microcracking, and matrix shear damage all at once. 

The last point summarized above was demonstrated in some of the first work done in this 
ARO program.  Details are shown in Figure 1.  In earlier work of ours in which only 
delamination and splitting cracks were included as possible failure modes, many of the 
features of a delamination crack emanating from a sharp slit were qualitatively 
reproduced, but the exact predicted shape of the delamination crack (Figure 1b) was not 
the same as seen experimentally (Figure 1a).  When a continuum damage representation 
of ply softening was included along with interlaminar and splitting cracks, the agreement 
with experiment became excellent (compare Figures 1a and 1c).  These results, we 
believe, strongly encourage the prospect of high fidelity simulations of damage using 
recent physical formulations of damage and current computer power. 
 
One of our objectives in the new program is to develop similar simulations to those 
depicted in Fig. 1 in the dynamic regime. 
 
Beam Theory Solutions for Multiple Delamination 
 
As well as numerical formulations, we have continued a prior line of research (Andrews 
et al., 2004; Andrews et al., 2005; Andrews et al., 2006; Cox et al., 2004) into the 
applicability of advanced beam theory methods.  This effort has proven a good 
investment, since, in many cases of interest, beam theory is surprisingly accurate when 
appropriately formulated and has given insight into deformations and energy release rates 
associated with multiple delamination cracking that may not have been nearly as clearly 
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highlighted by purely numerical work. 

A model was formulated for the multiple delamination of orthotropic plates subject to 
static and dynamic loading and deforming in cylindrical bending (Andrews and Massabò, 
2005). The model was based on a particularization of Timoshenko beam theory and 
accounts for cohesive and bridging mechanisms as well as contact and friction acting 
along the delamination surfaces. The model also accounts for the local elastic 
deformation at the delamination tips, which give rise to relative rotations between the 
different sub-beams (root rotations), through rotational springs. The springs arc activated 
by the crack tip stress resultants, normal and shear forces and bending moments. The 
compliances of the springs have been derived numerically for a wide range of elastic 
constants. Accounting for the root rotations substantially improves the accuracy of the 
one-dimensional model, leading to results that are in excellent agreement with rigorous 
two-dimensional solutions. In addition, it allows for closed form derivation of analytical 
expressions for the energy release rate and stress intensity factors. These expressions are 
an extension of work by Suo et al. and  Li et al. to account for shear, near tip deformation 
and multiple delaminations.  They depend only on the crack tip stress resultants, the 
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   (c) 
Figure 1.  (a) X-ray image of delamination crack growing from the tip of a sharp notch
(Spearing and Beaumont, 1992).  (b) Prediction in which delamination and splitting cracks
are the only damage.  (c) Prediction in which delamination and splitting cracks are
accompanied by distributed softening (due to microcracking) in the laminate plies. 
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elastic constants, the geometry and the compliances of the springs describing the root 
rotations.  These analytical results are, we feel, an important contribution to the 
fundamental development of beam theory for fracture studies. 

The model has been used to re-examine single delamination specimens of standard 
fracture tests. The validity of the model has also been demonstrated in multiple 
delamination systems, where mixed mode conditions often occur, and for orthotropic 
materials with a large mismatch in elastic parameters, for which simplified models 
neglecting root rotations yield inaccurate predictions. The limitations of the model, as 
well as of all models based on a first order approximation of shear, in dealing with short 
process zone lengths at the delamination tip where cohesive tractions act parallel to the 
delamination surfaces have been highlighted. These limitations can be removed using 
higher order theories. 

The model has been applied to investigate the interaction effects of multiple 
delaminations and of delaminations and regions of small delamination damage. 
Phenomena of amplification and shielding of the energy release rate and modifications in 
the mode ratio have been observed. The different regimes of behavior have been defined 
for a system of two delaminations in a cantilever beam. 

Finally, in a phase of the work that is essential for the current program, the model has 
been used to investigate the effect of different dynamic loading pulse durations on the 
fracture parameters of delaminated plates. Regimes of amplification and shielding of the 
energy release rate due to dynamic effects have been identified for a clamped beam with 
a single delamination (Fig. 2) and the results have been summarized using shock spectra.  
These first results for dynamic delamination will be used in our future work, including 
numerical simulations, as standards for limiting cases. 

The question of whether a numerical approach or beam theory is most appropriate for our 
further studies is central in our minds.  As we move into problems with more complicated 
material effects, such as stitching and crack face friction, as well as specimens or 

 
Figure 2.  Normalized energy release rate of a single centrally located stationary crack in a 
clamped beam specimen, with first natural period T1 subject to different pulse durations, Tp. 
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components with non-trivial geometry, numerical methods will obviously be favoured.  
However, beam theory results continue to prove valuable for analyzing limiting cases, for 
the special insight they can yield into the chief factors governing structural response. 

 
Dynamic Fiber Sliding 
 
In a collaboration with Professor Ares Rosakis of California Institute of Technology, we 
completed a detailed study of the physics of interfacial sliding in the prototypical 
problem of a fiber being pulled dynamically out of a matrix (Yang et al., 2006).  This 
work was initiated under a prior ARO grant (DAAD19-99-C-0042).  A substantial 
amount of work on the problem and the writing of the resulting paper were then 
performed without funding, after that grant had expired.  Under the new grant covered by 
this report (W911NF-05-C-0073), revisions were then performed in August and 
September, 2005, in response to some interesting ideas raised by the journal reviewers.  
The original contributions of the paper include: details of the deformation mechanics of 
the dynamic pullout problem; confirmation using numerical results of the accuracy of 
simple analytical shear lag solutions (detailed by us elsewhere (Sridhar et al., 2003)); and 
the interesting observation, in experiments and simulations, of indications of complex 
deformation, perhaps involving chaotic behaviour, during unloading.  The contributions 
contained specifically in the revisions made under this contract relate to the inference of 
information about interfacial friction from our experiments, using the analysis of our 
numerical simulations.  We point out especially that the disorder found upon unloading is 
insensitive to details of the friction law, which raises an essential distinction vis-a-vis ill-
posedness and instability remarked previously in the literature, which depend on the 
friction quite sensitively.  Furthermore, whereas all prior studies considered time-uniform 
far-field loading rates, our observations show disorder confined to the unloading regime – 
the loading regime is smoothly behaved.  The possibility that unloading creates 
qualitative effects in deformation fields that are not observed for rising or uniform 
loading is therefore raised. 
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Abstract

This paper deals with the elastic interaction of multiple through-width delaminations in laminated plates subject to
static out of plane loading and deforming in cylindrical bending. A model has been formulated utilizing the classical
theory of the bending of beams and plates and accounting for non-frictional contact along the delamination faces.
Strong interaction effects arise between the delaminations including shielding and amplification of the energy release
rate and modification of the mode ratio as compared to a structure with only a single delamination. Such behavior
has been summarized in maps that completely characterize the response of a system of two delaminations in a cantilever
beam. The quasi-static propagation of the system of delaminations is also strongly controlled by the delamination inter-
actions, which lead to local snap-back and snap-through instabilities, crack arrest and crack pull-along. The results
show similarity to those for cracked infinite bodies, but the finite-thickness of the plate plays an important role and
gives rise to more complex behaviors. The stability of the equality of length of a system of n delaminations is controlled
by their spacing. Finite element calculations confirm that the model proposed here is accurate, except when the differ-
ence in the length of the interacting delaminations is less than a few times the separation of their planes.
� 2005 Elsevier Ltd. All rights reserved.

Keywords: Multiple delamination; Shielding; Amplification; Crack interaction; Laminated structures
1. Introduction

Due to poor interlaminar properties, laminated fiber reinforced composites are susceptible to delamin-
ations caused for instance by manufacturing errors, edge effects or by such in service situations as impact,
0020-7683/$ - see front matter � 2005 Elsevier Ltd. All rights reserved.
doi:10.1016/j.ijsolstr.2005.04.025
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monotonic and cyclic loading. In the case of impact, typically many delaminations occur between layers of
different fiber orientation. The presence of the delaminations is often undetectable on the surface and may
significantly reduce the stiffness and load carrying capacity of the structure (Pavier and Clarke, 1995). When
a load is applied that causes sufficient interlaminar stresses, the delaminations may grow, often catastroph-
ically, separating the structure into two or more pieces and causing further reduction in stiffness and/or fail-
ure. While the behavior of structures in the presence of a single delamination has been widely studied since
the early work of Kanninen (1973, 1974) and others (see Massabò and Cox, 1999; Sridhar et al., 2002 for
work of the authors), the problem of the multiple delamination of laminated structures is not yet fully
understood. This paper examines the interaction of multiple delaminations in plates subject to static out
of plane loading and the effects this interaction has on the fracture behavior and structural response of
the laminate, using a cantilever plate as a case study.

An important interaction effect is contact that may occur between the delaminated plies. When there are
multiple delaminations, studies, such as those dealing with structures subject to in plane loadings (Larsson,
1991; Suemasu, 1993), have shown that extensive contact may occur along the delaminations faces. Contact
significantly affects the critical energy release rate for the extension of a delamination. Contact also intro-
duces regions in which friction may be important. The presence of contact will be shown later not to be
limited to delaminated structures subject to in-plane loading.

The effect of the interaction of the delaminations on the energy release rates is another important phe-
nomenon. Larsson (1991), using a model based on the theory of bending of plates to study delaminated
plates under in-plane loading, observed a discontinuity in the energy release rate of a delamination when
its length is equal to the length of other delaminations of the system. This discontinuity was thought to
be an anomalous product of the assumptions of plate theory; however, this paper will show that the dis-
continuity well approximates the actual behavior. Zheng and Sun (1998) showed that the effect of the inter-
actions between delaminations on the energy release rates depends on the through-thickness distance
between the delaminations. For the structure and crack configurations that they studied, they also observed
that the presence of a smaller delamination has little effect on the energy release rate of a delamination,
while the presence of a longer delamination may induce strong amplification or shielding. This paper will
show that in more general crack configurations, the presence of short delaminations may also strongly af-
fect the response.

The interaction effects also influence the stability of the equality of length of a system of n delaminations.
As it will be shown later, the delaminations of a stable system will tend to grow together, leading to an
increased capacity of the system to absorb energy and a more ductile structural response. An unstable sys-
tem of delaminations will have more localized delamination growth of only one or a small number of del-
aminations, leading to reduced energy absorption and a less ductile response. Suemasu and Majima (1996)
showed that an axisymmetric system of equally spaced, equal size, penny-shaped delaminations in a
clamped circular plate subject to a concentrated static force is stable. More general conclusions on the sta-
bility of systems of delaminations with unequally spaced cracks will be presented in the following.

The model proposed in this paper is based on the theory of bending of beams and plates and examines a
multiply delaminated plate subject to static, out of plane loading and deforming in cylindrical bending.
Non-frictional contact along the delamination surfaces is accounted for utilizing three approximations,
two of which allow closed form solutions of the problem. The energy release rate and the stress intensity
factors at each delamination crack tip are determined by the application of methods developed for beams
and plates with a single delamination. The results are quantified for the case of a cantilever beam with mul-
tiple edge delaminations. Shielding and amplification of the energy release rates of the cracks and the inter-
action effects on the macro structural response of the plate are examined. The model is validated through
finite element analyses.
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2. Theoretical model

2.1. Model assumptions

The problem under consideration is a thin laminated plate of thickness h with n through width delam-
inations. A system of Cartesian coordinates x–y–z is introduced. Each delamination, with index i, is arbi-
trarily distributed across the thickness, with through-thickness position yi and length ai. The plate is subject
to out of plane loading. An exemplary plate, with an applied surface pressure q, is shown in Fig. 1a.

The material comprising the plate is assumed to be homogeneous, isotropic and linear elastic, with elas-
tic modulus E and Poisson�s ratio m. The model is applicable to all laminates composed of isotropic layers of
the same material. With modifications to account for different material properties in the through thickness
direction, the model can also be applied to quasi-isotropic laminates and specially orthotropic laminates
(i.e. laminates composed of layers whose principal material directions are aligned with the reference axes)
with a large number of layers.

Only small deformations of the plate are considered, and plane strain conditions are assumed parallel to
the x-y plane so that the plate deforms in cylindrical bending. Therefore, the governing equations of the
plate correspond to those of a beam with a reduced Young�s modulus E ¼ E=ð1� m2Þ, where E is the lon-
gitudinal modulus. In the following analysis, the designation of beam and plate are identical. The classical
theory of bending of beams, which neglects shear deformation, is utilized to determine the response of the
delaminated structure.

The plate shown in Fig. 1a, is decomposed into multiple uncracked beam segments, defined by the coor-
dinates of the crack tips and continuity conditions are applied at the cross sections separating beam seg-
ments. For purposes of notation, the beam segments are numbered from top to bottom and left to right
in the structure, and delaminations are numbered from top to bottom. The height of beam segment k is
hk and its cross sectional moment of inertia and area are Ik and Ak, respectively. The generalized displace-
ments of the centroidal axis of beam segment k are the axial and transverse displacements uk and wk, and
the bending rotation uk. The stress resultants per unit width are axial force Nk, shear force Vk and bending
moment Mk (Fig. 1b).
Fig. 1. (a) Exemplary plate with multiple through width cracks subject to transverse loading. (b) Equilibrium of a beam segment,
showing stress resultants and contact pressures. (c) Crack tip element separating beam segments identified by j, k and k + 1. The
dashed line is the path used for calculating the J integral.
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Assuming no shear deformation, ck = 0, the compatibility equations for the beam segment k are
uk ¼ �wk;x; ek ¼ uk;x; jk ¼ uk;x; ð1Þ
where �k is the axial deformation and jk is the bending curvature and, x denotes differentiation with respect
to the longitudinal coordinate x. The constitutive equations are
Mk ¼ EIkjk ¼ �EIkwk;xx; Nk ¼ EAkek ¼ EAkuk;x; ð2Þ

Equilibrium of the beam segment is given by:
Mk;x � V k ¼ 0; V k;x þ pk;kþ1 ¼ pk�1;k; Nk;x ¼ 0; ð3Þ
where pk,k+1 and pk�1,k are either externally applied pressures or contact pressures acting on the lower and
upper surfaces of the segment (Fig. 1b).

At the ith crack tip, Fig. 1c, with coordinate x = xi separating the beam segments j, k and k + 1, the kine-
matic and static continuity conditions are
uj þ
1

2
ðhj � hkÞwj;x ¼ uk; uj �

1

2
ðhj � hkþ1Þwj;x ¼ ukþ1;

wj ¼ wk ¼ wkþ1;

wj;x ¼ wk;x ¼ wkþ1;x;

Nj ¼ Nk þ Nkþ1;

Mj ¼ Mk þMkþ1 �
1

2
ðhj � hkÞNk þ

1

2
ðhj � hkþ1ÞNkþ1;

V j ¼ V k þ V kþ1.

ð4Þ
The bending rotations of the beam segments at the crack tips, often referred to as root rotations, have been
assumed in (4) to be identical to one another.

In the plate shown in Fig. 1a, depending on the loading conditions and the geometry of the delamination
system, contact along the delamination surfaces may occur. This contact is assumed to be non-frictional,
which allows free sliding along the surfaces of a delamination, and is represented by the contact pressures,
pk,k+1 and pk�1,k. The presence of contact is simulated in three ways.

The first method is to assume that the deflections of the beams in the delaminated regions are the same.
Interpenetration along the delamination surfaces is then avoided; however, the beam segments in the del-
aminated region are also constrained from separating from each other, thus preventing any opening along
the delamination surfaces that may occur. This is referred to as the constrained-contact model and intro-
duces the constraint equation wk = wk+1 between the delamination surfaces of beam segments k and k + 1.

The second method is to assume no contact interaction between the beam segments in the delaminated
region. This allows opening along the delamination surfaces; however, interpenetration can occur,
wk 5 wk+1. This is referred to as the unconstrained-contact model.

The final method is to consider elastic contact along the delamination surfaces. The elastic contact is
approximated using a Winkler foundation of linear springs, which represent the through-thickness stiffness
of the contacting beam segments and act to resist interpenetration along the delamination surfaces. The
stiffness of the springs for a contacting beam segment k is determined by considering one dimensional ten-
sion or compression of a beam element of height hk/2. This model neglects shear deformations in the beam
segment, which would lead to coupling of the springs (see Kerr (1964) for an in-depth discussion of foun-
dation models), in accordance with what has been assumed initially. The stiffness of the layer of springs
representing contact between two beam segments, k and k + 1, is given by:
kk;kþ1ðxÞ ¼ HðwkðxÞ � wkþ1ðxÞÞ
2ET

hk þ hkþ1

; ð5Þ
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where ET is the through-thickness modulus of the material (ET = E for an isotropic material) andH(Æ) is the
Heaviside step function, H(n) = {1,n > 0;0,n < 0}, which ensures that the springs resist only interpenetra-
tion and do not resist opening between beam segments. The pressure exerted at the bottom and top of beam
segments k and k + 1 then follows as:
pk;kþ1ðxÞ ¼ kk;kþ1ðxÞðwkðxÞ � wkþ1ðxÞÞ. ð6Þ
This method is referred to as the spring-contact model. Since the regions of contact and opening are gen-
erally not known a priori, the problem in this case becomes nonlinear.

It will be shown in the following that the constrained- and unconstrained-contact models define upper and
lower bound solutions of the spring-contact model. Both models can be recovered from the spring-contact
model by taking the appropriate limit of the spring stiffness in Eq. (5). For the constrained-contact model,
the limit kk,k+1 ! 1 results in the constraint equation already defined, wk = wk+1. For the unconstrained-

contact model, the limit as kk,k+1 = 0 results in pk,k+1(x) = 0, namely the absence of any contact pressure.
The constrained-and unconstrained-contact models, while less accurate than the spring-contact model, have
the advantage of leading to closed form solutions of the problem in cases that require a numerical solution
when treated with the spring-contact model. The solutions obtained with the simplified models are qualita-
tively similar to those of the spring-contact model and they can lead to insightful conclusions.

The proposed model relies on the three simplifying assumptions of zero shear deformation, absence of
relative beam root rotations at the crack tips and non-frictional contact. The influence of shear deformation
on the solution of single delamination problems is known to affect only quantitative details of the solution
and to be negligible if the delamination is sufficiently long. In multiple delamination problems a stronger
effect is expected when the delamination tips are close. However, current studies (Andrews et al., 2005)
show that this effect is not strong in the absence of contact near the delamination tips and is negligible com-
pared to the effect of unequal beam rotations at the delamination tips in the presence of contact.

The influence of the assumption of equal beam rotations at the crack tips has been shown previously to
affect only quantitative details of the solution for single delaminations, leading to limited underestimation
of the compliance of the system and the energy release rate for mode I fracture problems and to negligible
effects in mode II fracture problems. In the presence of multiple delaminations the effect of the assumption
is expected to be stronger due to the presence of contact between the crack faces. Different methods for
correcting root rotations have been proposed since the early work of Kanninen (1973, 1974) (see for in-
stance Williams, 1989; Sun and Pandey, 1994, Pandey and Sun, 1996; and Wang and Qiao, 2004). All meth-
ods, however, complicate the solution of the problem and as the crack interaction effects examined in this
work will arise independently of the quantitative details of crack face phenomena, a simpler level of approx-
imation has been utilized for this work.

Accounting for the presence of friction between the crack surfaces does not complicate the model greatly
and could lead to interesting alterations of the results presented in this paper for certain geometries. This
effect is not studied here and is the topic of current work (Andrews et al., 2005). The assumptions of the
model and their implications will be discussed further in Section 5.

2.2. Model solution

An arbitrary section of the beam shown in Fig. 1a may be intersected by m of the n delaminations in the
beam. Using the compatibility, equilibrium and constitutive equations defined above, the governing differ-
ential equations for the beam segments intersected by the section are
EIkwk;xxxx þ pk;kþ1 ¼ pk�1;k; k ¼ 1; . . . ;mþ 1; ð7Þ

EAkuk;xx ¼ 0; k ¼ 1; . . . ;mþ 1; ð8Þ
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where the p�s are contact pressures between the beams, except for p0,1 and pm+1,m+2 which are externally
applied pressures on the external surfaces of the section. Eq. (8), referring to the axial displacements, are
not coupled and general solutions can be derived for all k�s. Similarly, Eq. (7), referring to the transverse
displacements, are not coupled and can be solved analytically within the approximation of unconstrained-
contact. Full coupling derives from the constraint equations, wk = wk+1, of the constrained-contact model
that again allows for a closed form general solution.

For the spring-contact model, on the other hand, the p�s are given by Eq. (6), which results in a system
of m + 1 coupled differential equations, Eq. (7). Because the springs representing contact do not act in
tension, contact may not occur between all of the beam segments intersected by this section. The presence
of traction-free crack surfaces simplifies the system of coupled Eq. (7) so that a set of subsystems char-
acterized by a lower number of coupled variables and equations can be defined. The limit cases are those
of full coupling of the wk for k = 1, . . .,m + 1, when contact exists between all segments, and no coupling
when all crack surfaces are opened. The coupled differential equations are linear with constant coeffi-
cients and the characteristic algebraic equations for the sub-systems can always been found. The general
closed form solution of a subsystem composed of one free segment and of 2 or 3 contacting beam seg-
ments is shown in Appendix A. A subsystem of more than three beam segments generally requires
numerical solution. General solutions of the subsystems for each section of the beam in all possible states
of opening and contact can then be determined and used in the iterative procedure to define the regions
of contact and opening.

The solution for the whole structure is determined by applying the kinematic and static boundary and
continuity conditions to define the constants of integration, Ci, of the general solutions of systems (7) and
(8). If the unconstrained-contact or the constrained-contact model is used, the problem can then be solved in
closed form. If the unconstrained-contact model predicts no interpenetration between the crack surfaces, the
solution is exact. In addition, the regions of crack face interpenetration predicted through the uncon-

strained-contact model give a first approximation of the regions where contact is expected to occur within
the spring-contact model.

If the spring-contact model is used, the regions where crack face contact and opening take place are un-
known a priori and must be determined by an iterative solution process. The iterative process is initiated by
assuming an initial state of contact along the delamination surfaces. The beam segments formed by the divi-
sions at the crack tips are further subdivided at all coordinates where there is a change in contact state along
a delamination surface. At these coordinates, additional continuity conditions are imposed between subdi-
visions j and k, which correspond to Eqs. (4) with the contributions from beam segment k + 1 removed. A
system of algebraic equations, corresponding to the boundary and continuity conditions at all divisions of
the beam and the general solutions of the governing Eqs. (7) and (8), is constructed based on this assumed
state of contact and is solved numerically for the unknown constants of integration, Ci Utilizing the dis-
placement solution, updated regions of delamination surface interpenetration and opening are determined
for all delaminations in the system. The updated regions of interpenetration are then assumed to be in con-
tact and a new system of algebraic equations is constructed and solved for the new Ci�s. A grid of points is
introduced along the axis of each beam segment and the convergence of the solution is checked by consid-
ering the norm of the transverse displacements at these locations. The process is repeated until convergence
of the solution to a specified tolerance. For all cases examined in this paper, convergence of the solution has
been reached easily with only a limited number of iterations.

2.3. Energy release rate and mode decomposition

It is assumed that the n delaminations in the structure are constrained to propagate along the low tough-
ness fracture paths defined by their planes. The energy release rate for the individual coplanar extension of a
delamination tip in this system is determined by application of the J-Integral (Rice, 1968) along a
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path around the delamination tip. The expression for the J-integral for crack tip i, at the coordinate xi, sep-
arating beam segments j, k and k + 1 (Fig. 1c), is
Gi ¼ J ¼ 1

2

M2
k

EIk
þ N 2

k

EAk
þ

M2
kþ1

EIkþ1

þ
N 2

kþ1

EAkþ1

�
M2

j

EIj
�

N 2
j

EAj

 !�����
xi

ð9aÞ
This expression is identical to the expression valid for beams with a single delamination, as is explained in the
following. Each crack tip in the beam shown in Fig. 1a can be extracted from the structure as an equivalent
beam with a single delamination whose upper and lower surfaces are defined either by the surfaces of the
plate or by other delaminations, Fig. 1c. This equivalent single beam is subject to end forces and moments
as well as possible contact pressures on its upper and lower surfaces. The path for the J-integral, shown in
Fig. 1c, is taken at the crack tip cross sections immediately preceding and following the crack tip and along
the upper and lower surfaces of the equivalent beam. For this path, the contact pressures on the upper and
lower surfaces do not enter the expression for the J-integral. If there is another delamination tip at the same
coordinate xi the energy release rate is determined as the limit for Dxi tending to zero of Eq. (9a) applied to a
system in which the length of the delamination of interest has been increased (the sign of Dxi is chosen cor-
responding to an increase in delamination length) by incrementing the position of the crack tip to xi + Dxi.
Expression (9a) is only valid when the rotations of the beams at the crack tips are assumed to be the same,
and must be modified accordingly if this assumption is relaxed (see Section 5). Similarly, the equation could
be modified to include the contributions due to the shear deformations along the beams.

The above approach cannot be applied to analyze the simultaneous propagation of m delamination tips
that have the same coordinate xm. Instead, the energy release rate in this case is conveniently determined by
the variation of the total potential energy with respect to simultaneous unit extension da. The energy release
rate for each of the delaminations under this condition is
Gi ¼
1

m
dW
da

; ð9bÞ
where W is the total potential energy of the system. The value of da should be chosen such that it corre-
sponds to an increase in length of the delaminations. For the coordinate system described in Fig. 1, the
extension of the left tips of delaminations corresponds to da = �dxm and the extension of the right tips
of the delaminations corresponds to da = dxm. The variation of the total potential energy is also used to
analyze the simultaneous propagation of m delamination tips that do not share the same coordinate.

The conditions at the crack tips in the general beam of Fig. 1a are generally mixed mode. The energy re-
lease rate calculated using Eqs. (9a) and (9b) includes both the mode I and mode II components, GIi and GIIi.
Separation of the modes of fracture is accomplished by using the method proposed by Suo (1990), Suo and
Hutchinson (1990) and Hutchinson and Suo (1992). They derived analytical expressions for the mixed mode
stress intensity factors for a beamwith a single crack, with total energy release rate given by Eq. (9a), in terms
of the stress resultants, bending moments and normal forces, at the cross sections immediately preceding and
following the crack tip, and geometrical parameters. These expressions depend on an additional parameter
that can be derived with a rigorous two-dimensional solution of the problem. In the model proposed in this
paper, the method is applied to the equivalent beam with a single crack shown in Fig. 1c with energy release
rate given by Eq. (9a) and is thus valid for each crack tip in the system.
3. Cantilever beam with n equal length delaminations

The first study problem is a cantilever beam of length L with n through width, arbitrarily spaced edge
delaminations (Fig. 2) subjected to a static concentrated out of plane force P at its free end. This simple



Fig. 2. Cantilever beam with n edge cracks subject to a transverse load P.
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structure provides an analytical/semi-analytical description of how multiple delaminations interact. This
problem yields results that are identical to those for an edge cracked simply supported beam, loaded by
an out of plane force at its mid span. Solutions for simply supported or fixed plates with mid-span, out
of plane loading can be simply obtained by modifying the boundary conditions at x = 0 and x = L. The
solution can also be easily extended to circular axisymmetric plates loaded by concentrated out of plane
forces at the centers.

In this problem no axial forces are developed; thus the equations governing the axial displacements are
ignored. The boundary conditions for this problem are
w0 ¼ 0; w0;x ¼ 0 at x ¼ 0;

P ¼
Xjþn

k¼j

V k; Mk ¼ 0; k ¼ j; . . . ; jþ n;

wk ¼ wkþ1; k ¼ j; . . . ; jþ n� 1 at x ¼ L;

ð10Þ
where j is the index of the uppermost beam segment at the free end of the beam; and as before, the sub-
scripts define the number of the beam segments. Contact of the beam segments under the load point is
approximated by assuming that their deflections at the free end are equal. This assumption is exact for
the unconstrained-contact model and accurate for the spring-contact model if the delaminations are long.
The static and kinematic continuity conditions at each crack tip are given by Eq. (4).

In the simplest configuration, the delaminations in the beam shown in Fig. 2 are of the same length a. In
this configuration, the beam is divided up into n + 2 beam segments, n + 1 segments forming the cracked
region, and one segment forming the uncracked region. Each crack tip is located at the same coordinate
x = L � a. The continuity conditions (4) are modified as follows:
w0 ¼ wk; w0;x ¼ wk;x; k ¼ 1; . . . ; nþ 1;

M0 ¼
Xnþ1

k¼1

Mk; V 0 ¼
Xnþ1

k¼1

V k.
ð11Þ
Combining the general solutions for each beam segment for the three contact models allows this system of
4(n + 2) boundary and continuity equations to be solved in closed form (Appendix B). The three methods
yield identical solutions, which shows that the deflections of the beam segments in the cracked region of the
beam are identical and there is no contact or opening along the crack faces.

3.1. Energy release rates for simultaneous propagation of equal length delaminations

The energy release rate for each delamination when the delaminations are assumed to propagate simul-
taneously is conveniently determined by the variation of the total potential energy W due to a unit prop-
agation of the cracks, Eq. (9b):
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Gi ¼
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n
dW
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¼ 1

2n
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EI0
I0

Xnþ1

k¼1
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, !
; ð12Þ
where I0 is the moment of inertia of the intact portion of the beam and Ik is the moment of inertia of the
beam segment in the cracked portion of the beam. The next sections will show that for n equally spaced
delaminations the energy release rate for simultaneous propagation is higher than the energy release rate
corresponding to the propagation of one of the delaminations of the system. On the other hand, when
the delaminations are unequally spaced, the response is controlled by the transverse position of the
delaminations.

Eq. (12) shows that if the delaminations are uniformly spaced across the entire cross section, then as the
number of delaminations increases, the energy release rate per delamination also increases. If on the other
hand, the cracks are confined to a band, then as the number of cracks within the band increases the energy
release rate per crack decreases. The latter case could represent damage localization in the beam. If a crack
growth criterion based on the total energy release rate is applied, the first case would correspond to a de-
crease of the critical load on increasing the number of cracks, and the second case to an increase of the
critical load. However, for the second case, since the cracks are not equally spaced, the assumption of
simultaneous propagation may not be valid and the critical load could be defined by the propagation of
only one of the cracks of the system.

3.2. Stability of the equality of length in a system of equal length delaminations

The equality of length will be said to be stable in a system of equal length delaminations if the system
recovers the condition of equal length after the lengths of one or more cracks are perturbed.1 It will be
shown later that, for a fixed number of delaminations, the energy absorption is higher if the equality of
length is stable than if it is not.

3.2.1. Equally spaced delaminations

This special case was previously examined by Suemasu and Majima (1996) who investigated the stability
of the equality of length of an axisymmetric system of equally spaced, penny-shaped delaminations in a
clamped circular plate subject to a concentrated out-of-plane load. The study was performed under the sim-
plifying kinematic assumption of constrained-contact. This assumption is relaxed here, and the stability of
the equality of length is studied using the spring-contact model. The problem is greatly simplified by noting
that in the limit of the delaminations having the same length, the solution of the spring-contact model is
identical to that of the unconstrained-contact model. Closed form solutions can therefore be found, which
are detailed in Appendix C and summarized below.

An ideal system of equal length, equally spaced delaminations propagates when the energy release rate,
given by Eq. (12), equals the fracture energy of the material. If a positive perturbation of the length of crack
i in the system is considered, then the energy release rate for the propagation of that crack is lower than that
corresponding to the simultaneous propagation of the remaining cracks. Thus, using a fracture criterion
based on the total energy release rate, the remaining delaminations will grow up to the length of the per-
turbed delamination and equality of length will be restored. Conversely, if a negative perturbation of the
length of crack i is considered, then the energy release rate of crack i is higher that of the remaining cracks:
the system is again stable. Since a negative perturbation of one crack is identical to a positive perturbation
e term stability is used here to refer to changes in the crack geometry and not the question of whether the crack growth is quasi-
stable) or dynamic (unstable).
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of the remaining cracks and vice versa, conclusions on the effect of positive or negative perturbations of one
crack will also hold for perturbations of a generic number of cracks.

The same conclusions are reached if the simplifying kinematic assumption of constrained contact is
used. The analysis, which is similar to that presented in the Appendix C, is not presented here. Suemasu
and Majima (1996) obtained the same results for axisymmetric clamped circular plates.

3.2.2. Unequally spaced delaminations

A system of unequally spaced, equal length delaminations does not always grow self-similarly, even in
the absence of length perturbations. The question of stability of the equality of length is controlled by
the through-thickness position of the delaminations. The map of Fig. 3 refers to a two-crack system and
has been constructed by using the spring-contact model. Similar results are obtained using the uncon-

strained-contact model. Fig. 3 shows regions in which the energy release rates for the propagation of one
of the two cracks, GU and GL, and for their simultaneous propagation, GB, have different ordering. The
map is a function of the through-thickness positions of the two cracks. The upper crack is located at a dis-
tance h3 from the upper surface of the beam and the lower crack is located at a distance h5 from the lower
surface of the beam, as shown in the inset in the figure.

The map shows three regions: region I in which GU > maxðGL;GBÞ; region II in which
GB > maxðGU;GLÞ; and region III in which GL > maxðGU;GBÞ. Thus in regions I and III, only one crack
will propagate when critical conditions are satisfied, while in region II, both cracks propagate together.
Furthermore, in regions I and III, the system is more unstable (increasing difference between the highest
and next highest values of GU, GL, and GB) under positive perturbations of the length of the upper crack
(region I) and to negative perturbations of the length of the lower crack (region III).

For cases lying in region II the system is stable to both positive and negative perturbations. Thus, in this
region the delaminations will always grow self-similarly. The solution of equally spaced delaminations is
represented in the diagram by a point in the shaded pocket at h3 = h5 = 1/3h.

In the case of unequally spaced delaminations, the constrained-contact model yields a map with a larger
region of stability than that shown in Fig. 3. The region is shown in Fig. D.1b. This difference highlights the
limitations of the simplified contact models when applied to general delamination geometries.

In a real structure, the location of the delaminations through the thickness of the plate will depend on the
internal structure of the material and the loading conditions, which therefore determine the conditions for
the stability of the equality of length of the system.
Fig. 3. Map of regions of different energy release rate for a system with two cracks.



Fig. 4. Dimensionless diagram of the critical load for crack propagation versus load–point displacement for a cantilever beam of n
equal length and equally spaced cracks.
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3.3. Macrostructural response

The macrostructural behavior of a plate of length 10h with n equally spaced delaminations, hk =
h/(n + 1), of equal initial length a0 = 2h is shown in Fig. 4. The delaminations have been assumed to prop-
agate when Gi ¼ Gcr, where Gcr is the fracture energy of the material. The figure shows the normalized crit-
ical load for the propagation of the crack system as a function of the normalized load point displacement.
As the number of delaminations increases, the critical load for initial growth of the delaminations decreases
and the post-peak behavior of the structure becomes more ductile. This is to be expected as diffuse damage
leads to a more ductile structural response and increased energy absorption. In contrast, localized damage,
for instance the propagation of a single crack, results in an increased ultimate capacity of the structure, but
in a less ductile response and decreased energy absorption.

4. Cantilever beam with two unequal length delaminations

In a general system of delaminations with unequal length and spacing, Eq. (12) and the conclusions and
results of the previous section do not apply and the general problem defined by Eq. (7) must be solved in
order to define energy release rates. In this section, a system of only two cracks is studied, in which many of
the characteristics expected of general cases can be observed, without distracting complexity. In most
cases, the behavior of the system depends on only three dependent variables, allowing complete visualiza-
tion of the interaction effects.

A cantilever beam of length L and height h with two edge delaminations of arbitrary length and spacing
is shown in Fig. 5. The length of the upper delamination is aU and the length of the lower delamination is
aL. The through-thickness positions of the delaminations are defined by h3 and h5, where h3 is the distance
of the upper delaminations from the upper surface of the beam and h5 is the distance of the lower delam-
ination from the lower surface of the beam. Utilizing the three approximations for treating contact, the sys-
tem of equations formed by the boundary conditions Eqs. (10) and continuity conditions Eqs. (4) together
with Eq. (7) has been solved for the three possible configurations of the system, aU = aL (Section 3), aU > aL
(Fig. 5a) and aU < aL (Fig. 5b).

4.1. Energy release rate

Solutions for the energy release rate of the different configurations of the system are presented in Appen-
dix D. Appendix A also presents in Fig. D.1 maps constructed for a general through-thickness distribution



Fig. 5. Cantilever beam with two arbitrarily spaced cracks.
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and lengths of the delaminations that show regions in which the energy release rate of one of the cracks is
higher or lower than that of the other crack and can be used to analyze crack propagation in the system.

Fig. 6 shows exemplary solutions for a system of two equally spaced cracks (h3 = h5 = h/3). Fig. 6a de-
fines the energy release rate of the upper crack on varying its length, while the length of the lower crack is
kept fixed at aL/h = 5.0. Fig. 6b defines the energy release rate of the lower crack on varying its length,
while the length of the upper crack is kept fixed at aU/h = 5.0. The figures show a comparison of the energy
release rates calculated using the three approximations of contact (solid curve = spring-contact, dashed
curve = unconstrained-contact and dash-dot curve = constrained-contact). Numerical results from these fig-
ures and others show that the unconstrained-and constrained-contact models define upper and lower bounds
of the spring-contact model for all through-thickness distributions of the cracks. Fig. 6 also shows by the
Fig. 6. Normalized energy release rates of two equally spaced cracks in the beam of Fig. 5 as a function of the length of the cracks.
(a) Upper crack, (b) lower crack.
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thin line the energy release rate of the crack in the absence of the other crack, or the single crack limit. The
limit is approached when the interaction effects disappear. The constrained-contact model reaches this limit
immediately after the discontinuity in energy release rate. Zheng and Sun (1998) showed similar behavior
for the longer delamination of two central, through-width delaminations in a three-point bending specimen.

Fig. 6a and b show that in the equally spaced delamination system studied there is a strong interaction
effect on the energy release rate, which is always amplified with respect to the single crack solution. The next
section will show that different solutions, characterized by shielding, amplification or a combination of
both, are found for other crack systems. In addition seems out of place reach the same length there are neg-
ative discontinuities of the same magnitude in their energy release rates. It will be shown in Section 5 that
the discontinuity is a good approximation of a sharp change in energy release rate shown by a full numer-
ical solution of the problem. In other material systems a similar behavior has been observed. For instance,
from the 2-D solution of an infinite body with a main crack interacting with ordered arrays of micro-cracks,
sharp jumps in the stress intensity factors have been noted as the main crack tip moves through the array
(Brencich and Carpinteri, 1996).

4.2. Shielding and amplification of the energy release rate

As observed in the previous section, a delamination in a system of delaminations can either amplify or
shield the energy release rates of the other delaminations or have no influence on them. This effect can be
synthesized for the crack system of Fig. 5 by considering diagrams of the energy release rate of a crack, Gi,
normalized with respect to the energy release rate of the same crack when the other crack is not present, Gio.

The energy release rate of a crack is always amplified by the presence of a shorter crack independent of
their through-thickness positions, which only affect the magnitude of the amplification (the constrained-con-
tact model erroneously predicts for this regime neither amplification or shielding). A longer crack can have
different effects on a shorter crack, with the sense of the effect depending on their through-thickness posi-
tions and, in some regimes, their lengths. The maps shown in Fig. 7a and b have been obtained using the
spring-contact model (identical results are obtained assuming unconstrained-contact). The dashed lines in
the figures are solutions of the constrained-contact model.

If the point describing the positions of the two delaminations falls in the upper region (III), the shorter
delamination will always be shielded by the longer. The magnitude of the shielding effect depends on their
Fig. 7. Map of shielding and amplification of the energy release rate for a crack in the presence of a longer crack (schematic of Fig. 5).
Shaded regions (II) indicate a combination of shielding and amplification depending on the length of the delaminations. (a) Upper
crack, (b) lower crack.
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lengths. If the point falls in the lower region (I), the energy release rate of the shorter delamination will al-
ways be amplified by the longer. If the point falls in the middle region (II), either amplification or shielding
can occur for the shorter crack, depending on the two lengths. The solution of the constrained-contact

model does not have a region of mixed shielding and amplification. The dashed line in Fig. 7 corresponds
to crack configurations where GL ¼ GL0 and separates regions of shielding (III) and amplification (I). This
simplified model is unable to predict the complex details of multiply delaminated systems.

An example considering the energy release rate of the lower delamination for a through-thickness posi-
tion of the cracks that falls in region (I), showing amplification of GL, is presented in Fig. 8a. The figure
shows GL normalized with respect to GL0 on varying aL with the length of the upper crack fixed at
aU/h = 5.0. When the lower crack is shorter than the upper crack, there is a strong amplification of GL with
Fig. 8. Examples of shielding and amplification of the energy release rate of the lower crack in the two-crack system of Fig. 5 (upper
crack length fixed).
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an amplification factor around 3. The amplification is then reduced by the discontinuity (localized shielding
effect), when the two cracks have the same length, and it decreases on increasing the length of the crack. An
example of shielding of GL, a point in region (III), is shown in Fig. 8c. In this case the discontinuity in G
corresponds to a localized amplification effect. An example of both shielding and amplification depending
on the lengths of the delaminations, a point in region (II), is shown in Fig. 8b.

In this structure the shielding of one of the delaminations is always accompanied by the amplification of
the other delamination. Among all the possible through-thickness distributions and lengths of the delam-
inations, the effect of the interaction can be very strong, and it has been verified numerically that the energy
release rate can be amplified up to 600% by the presence of a much longer delamination.

Brencich and Carpinteri (1996) showed qualitatively similar amplification and shielding effects when
considering the interactions of a main crack propagating through a pair of symmetrically located micro-
cracks in an infinite body. For this problem the magnitude of the shielding and amplification depends
on the spacing between the cracks, but the qualitative behavior of the shielding and amplification is unaf-
fected by this distance. In contrast, for the structural delaminations discussed in this paper, due to geomet-
rical effects, the through-thickness position of the delamination may alter the condition of shielding or
amplification, not just their magnitudes. This is in agreement with the numerical study of the interaction
of two central delaminations in a three-point bending specimen of Zheng and Sun (1998).

4.3. Mode ratio

Mode decomposition has been performed for the exemplary system of two equally spaced delaminations.
Fig. 9 shows the relative amount of mode II to mode I defined by the phase angle W ¼ tan�1ðKII=KIÞ. Fig.
9a defines WU for the upper delamination on varying its length, while the length of the lower delamination
Fig. 9. Relative amount of mode II to mode I stress intensity factors in the two-crack system of Fig. 5.



870 M.G. Andrews et al. / International Journal of Solids and Structures 43 (2006) 855–886
is kept fixed at aL/h = 5.0. Fig. 9b defines WL for the lower delamination on varying its length, while the
length of the upper delamination is kept fixed at aU/h = 5.0.

The figures compare solutions obtained using the spring-contact model (thick solid line) with the uncon-
strained-contact model (dashed line) and the solution of a single delamination W0, in the absence of the
other delamination (thin line). For a single delamination, the relative amount of mode II to mode I is inde-
pendent of the delamination length and given by WU0 = 66.7� for the upper delamination and by WL0 = 90�
for the lower delamination (the lower delamination experiences pure mode II conditions due to localized
contact at the crack tip).

Fig. 9a shows that when the upper delamination is shorter than the lower, the conditions are pure mode
II. Comparison with the single delamination solution highlights the strong effect produced by the presence
of the lower delamination. When the upper delamination reaches the length of the lower delamination there
is a sharp transition and the mode I component is suddenly increased above the corresponding single
delamination solution (thin line). As the upper crack lengthens, the interaction decreases and the solution
tends to the single delamination limit. The dashed curve highlights the limitations of the simplified uncon-

strained-contact model, which predicts an unrealistic phase angle W > 90�, due to the interpenetration of the
delamination surfaces.

Fig. 9b shows that the lower delamination is in pure mode II conditions due to contact at the delami-
nation tip when its length is shorter than the length of the upper delamination and this solution coincides
with the solution of the single delamination. When the lower delamination approaches the length of the
upper delamination, there is a sudden transition (solid curve) to a large value of the mode I component.
The interaction effect then disappears quickly as the lower delamination lengthens and the solution tends
again to the solution of a single delamination. Interestingly, when the lower delamination is longer, the
bending theory model always predicts opening at the lower delamination tip even when the mode decom-
position method defines a negative mode I stress intensity factor and therefore pure mode II conditions
(shown in Fig. 9b for aL/h > 6.75). This fictitious opening displacement field is a consequence of neglecting
the root rotations at the delamination tip, which if properly accounted for would restore contact (Andrews
et al., 2005).

4.4. Delamination growth and macro-structural behavior

To investigate the macro-structural response of the plate, the quasi-static propagation of the system of
two delaminations shown in Fig. 5 has been studied using the spring-contact model. A delamination has
been assumed to propagate when its energy release rate equals the fracture energy of the material, Gcr.
The cracks have been assumed to grow under delamination length control, which allows virtual delamina-
tion growth branches to be followed. Several cases, identified by different through-thickness positions of the
delaminations and different notch lengths as shown in Figs. 10–13, have been considered to highlight a
number of interesting macrostructural responses of the system. The figures show the critical load for crack
propagation as a function of the load point deflection. Also shown in the inset in the figures is the evolution
of the lengths of the delaminations; the dashed line shows the length of the lower delamination and the solid
line shows the length of the upper delamination during the loading process.

For the first delamination configuration, shown in Fig. 10, the lower delamination starts to propagate
first at (A). The propagation is unstable up to point (B), where the delamination reaches the upper delam-
ination. At this point the delamination arrests and the delamination system can be made to propagate only
by increasing the applied load. This behavior is due to a negative discontinuity, shielding, in the energy re-
lease rate. After point (C) the lower delamination continues to propagate unstably until the structure fails.
A snap-back instability is present as the lower delamination grows to the upper delamination.

In the case shown in Fig. 11 the lower delamination begins to propagate unstably at point (A). At (B) the
delaminations are of the same length and there is a sudden drop in the critical load, corresponding to a



Fig. 10. Dimensionless diagram of the critical load for crack propagation versus load–point displacement in the two-crack system of
Fig. 5: snap-back instability and local increase in critical load due to a local shielding effect.

Fig. 11. Dimensionless diagram of the critical load for crack propagation versus load–point displacement in the two-crack system of
Fig. 5: snap-back instability with local drop in critical load due to a local amplification effect.

Fig. 12. Dimensionless diagram of the critical load for crack propagation versus load–point displacement in the two-crack system of
Fig. 5: snap-through instability and hyper-strength phenomenon due to a local shielding effect.
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Fig. 13. Dimensionless diagram of the critical load for crack propagation versus load–point displacement in the two-crack system of
Fig. 5: crack pull along.
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positive discontinuity, amplification, of the energy release rate. The lower delamination then continues to
propagate unstably.

The case shown in Fig. 12 is similar to that examined in Fig. 10. However in this case the new critical
load due to the negative discontinuity, shielding, in the energy release rate is higher than the initial load for
delamination propagation. This is an interesting example of hyperstrength, which is defined as the condi-
tion that the ultimate load of the structure exceeds the load corresponding to the first propagation of one of
the delaminations of the system even in the absence of any strengthening mechanisms. The hyperstrength is
produced by the elastic interactions of the parallel delaminations that create local shielding and hardening
effects, leading to a snap-through instability.

An example of crack pull-along, in which the finite propagation of one delamination causes the propa-
gation of the other delamination, is shown in Fig. 13. In this case the lower delamination propagates first at
point (A). When it reaches the second delamination at point (B), there is an increase in critical load due to a
negative discontinuity in energy release rate. The lower delamination continues to propagate at point (C).
At point (D), the upper delamination begins to propagate, and both delaminations continue to propagate,
keeping a constant relative length until the structure fails. This behavior occurs for through-thickness dis-
tributions of the delaminations that fall just to the right or just above the shaded region of the map of Fig.
D.1a, and just to the right of the shaded region in the map of Fig. D.1b.
5. Validation of the proposed model

The proposed model, applied to the problem of a cantilever beam with two edge cracks, has been val-
idated using the finite element method (FEM) and the commercial code ANSYS (5.5). The mesh consisted
of plane stress isoparametric triangular elements. To obtain an accurate solution, including relative crack
displacements, while keeping the number of degrees of freedom low, a coarse mesh was used for the body of
the beam and very fine meshes around each crack tip and along areas of contact. The stress singularities at
the crack tips were modeled with rosettes of quarter point elements. Contact along the crack faces was sim-
ulated using gap elements that prevent interpenetration of the beams with stiff linear springs. Convergence
of the solution was checked by varying the size and number of elements and stiffnesses of the gap springs.
Energy release rates were calculated by two methods, the J-Integral, Rice (1968), and the displacement cor-
relation method, Chan et al. (1970), which was also used to evaluate the mode ratio. The path of the J-inte-
gral was chosen within a fine mesh region so that it encompassed sufficient elements for its value to
converge.
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5.1. Comparison of energy release rates

The energy release rates determined by the finite element method and the present spring-contact model
are shown in Fig. 14a for a system of two equally spaced cracks (h3 = h5 = h/3). The error between the two
solutions is shown in Fig. 14b. In the figure, the normalized energy release rate of the upper crack is
depicted as a function of the length of the upper crack. The length of the lower crack is kept fixed at
aL/h = 5.0.

Fig. 14a and b show that the results of the proposed model generally agree with the finite element results.
When the cracks reach the same length, the finite element solution predicts a continuous transition in en-
ergy release rate. This transition matches the discontinuity in energy release rate predicted by the beam the-
ory model.

Short cracks (aU < 2h for the geometry of Fig. 14) are characterized by large errors due to the well-
known limitations of classical beam theory. As expected, the error drops when the length of the crack in-
creases, provided it is not similar to the length of the other crack, to less than 5% when 2h < aU < 4.6h or
aU > 7.0h. Where the two cracks have similar lengths and the energy release rate is characterized by a dis-
continuity, the error increases significantly (up to 30% for the geometry studied in Fig. 14). The width of
this region is given by a few times the separation of the planes of the interacting cracks and depends on the
conditions of the crack surfaces (contact or opening). For the geometry studied in Fig. 14, the error is above
5% for 4.6h < aU < 7.0h. The interval is not symmetric about the length of the lower crack, aL = 5h, because
of the different conditions along the crack surfaces when the upper crack is shorter (opening) or longer
(contact) than the lower. Numerical calculations show that behaviors similar to that observed in Fig. 14
characterize all possible crack configurations and that the width of the region where the error increases sig-
nificantly is always a few times the distance between the planes of the cracks.
Fig. 14. (a) Energy release rate of the upper crack in the two-crack system of Fig. 5: comparison between FE and proposed model
results. (b) Relative error between the solutions of (a) (dashed line indicates a 5% relative error).
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5.2. Comparison of mode ratios

The relative amount of mode II to mode I as measured by the phase angleW ¼ tan�1ðKII=KIÞ determined
by the finite element method and the model presented in this paper utilizing the spring-contact approxima-
tion is shown in Fig. 15. Fig. 15a shows the phase angle of the upper crack as a function of the length of the
upper crack, while keeping the length of the lower crack fixed at aL/h = 5.0. Fig. 15b shows the phase angle
of the lower crack while keeping the length of the upper crack fixed at aU/h = 5.0.

The phase angles of the lower crack determined by the two models, shown in Fig. 15b, agree well with
the relative error peaking near the discontinuity at only 10%. Fig. 15a instead shows a significant difference,
with an error up to 26%, between the results of the bending theory model and FEM when the upper crack is
longer and there is contact along both delamination surfaces. When the lower crack is longer and there is no
contact along the delamination surfaces, the error is instead very low. This result confirms what has already
been observed for the energy release rate. However, the width of the region where the relative error on the
mode ratio is quite large and is greater than that corresponding to the energy release rate.

5.3. Discussion

The relative error between the model and the FE predictions, as observed in Figs. 14 and 15, is greater
when there is contact between the crack surfaces. This is mainly due to the assumption of the proposed
model of zero relative root rotations of the sublaminates at the crack tips that leads to an overestimation
of the contact pressures. The effects of the root rotations on the contact pressures and thus on the energy
release rate and mode ratio are most significant when the cracks are close to the same length jaU � aLj < h

and are stronger on the mode ratio. When there is no contact along the crack faces, neglecting the root
Fig. 15. Relative amount of mode II to mode I for a two-crack system: comparison between proposed model and FE results.



Fig. 16. Comparison of predicted contact pressures along the faces of the upper crack in the two-crack system (dashed line: contact
pressures using the FE displacement field and spring-contact approximation).
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rotations does not significantly affect the solution, confirming what has already been observed for single
delaminations loaded primarily in shear.

The contact pressure distribution along the surfaces of the upper crack, for equally spaced cracks with
lengths aU/h = 5.5 and aL/h = 5, predicted by the proposed model and the FE method are shown in Fig. 16
as a function of the position along the crack. The model predicts a peak pressure double that of the FE
solution. These discrepancies in the solutions cannot be attributed to the contact approximation used in
the model: using the centerline beam deflections obtained in the FE solution and Eq. (6) to predict the con-
tact pressure leads to the pressures identified by the dashed curve that for magnitude and shape closely fol-
low the finite element solution. Including shear deformations in the model improves the pressure
distribution, but does not substantially improve the values of the energy release rate.

The overestimation of the contact pressures is associated with significant errors in the stress resultants at
the crack tip. This is shown in Table 1 where bending moment and shear force obtained using the proposed
model are compared with the FE results (rows 2 and 1). Table 1 also compares the energy release rates and
phase angles obtained using the proposed model (row 2) and the FEM (row 1) and highlights the previously
noted large errors. If the actual FE stress resultants are used instead of the model resultants in Eq. (9a) and
in the expressions of Suo and Hutchinson for the stress intensity factors, the solution is still affected by large
errors. This is shown in row 3 of the table. The reason for this discrepancy is that both Eq. (9a) for the
energy release rate and Suo and Hutchinson�s expressions do not account for the contributions due to
the shear deformations along the beams and the deformations at the crack tip cross sections (i.e., root
rotations).

The expression (9a) for the energy release rate can be modified to account for these effects as follows:
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where G is the shear modulus, j is the shear correction coefficient (5/6 for a rectangular cross section),
V and u are the shear resultant and the bending rotation respectively.

Li et al. (2004) recently modified the stress intensity factor expressions derived by Suo and Hutchinson to
include the contributions of the shear deformations along the beam and the crack tip deformations numer-
ically. Wang and Qiao (2004) proposed an analytical extension of the method of Suo and Hutchinson.
Rows (4) and (5) in the Table show solutions obtained using these two methods. Both methods lead to sub-
stantial improvement in the solutions. The method of Wand and Qiao relies on the assumptions of plate
theory in order to determine the crack tip rotations, and thus is not as accurate as the numerical solution
of Li et al.



Table 1
Stress resultants, energy release rate and phase angle of the upper crack

Moment—
upper
beam arm
(M/Ph)

Moment—
lower
beam arm
(M/Ph)

Shear—
upper
beam arm
(V/P)

Shear—
lower
beam arm
(V/P)

WU,
% Error from
FEM

GUEh=P 2,
% Error from FEM

(1) FE stress resultants �0.967 �4.535 �0.644 1.644 72.4� 428.59
G and W Displacement
correlation Technique

(2) Proposed model �0.300 �5.200 �1.752 2.752 54.2�,
25.18%

380.89,
11.13%

(3) FE stress resultants �0.967 �4.535 �0.644 1.644 80.9�,
�11.66%

386.14,
9.91%G Eq. (9a)

W after Suo and Hutchinson

(4) FE stress resultants �0.967 �4.535 �0.644 1.644 72.2�,
0.31%

430.18,
�0.37%G, W after Li and Thouless

(5) FE stress resultants �0.967 �4.535 �0.644 1.644 74.4�,
�2.71%

417.65,
2.55%G Eq. (13)

W after Wang and Qiao

Equally spaced cracks, aU/h = 5.5, aL/h = 5, h/L = 0.1.
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The observations above highlight that the model proposed in this paper could be improved substantially
by: removing the assumption of zero relative root rotations at the crack tips, for instance by using localized
linear elastic rotational springs (Pandey and Sun, 1996); including the contribution of shear deformations
along the beams; applying Eq. (13) for the energy release rate and an extended solution, e.g. of Li et al.
(2004) or Wang and Qiao (2004), for the decomposition of the modes of fracture. This would lead to a more
accurate quantitative prediction of the displacement fields along the crack surfaces and the fracture param-
eters of the system. Such an approach would become necessary, and would probably be sufficient for plane
conditions, if the influence of crack-wake mechanisms, such as bridging or cohesive mechanisms and fric-
tion, on the fracture behavior of multiply delaminated plates is to be investigated.
6. Application of the proposed model to the design

6.1. Beam theory for quantitative analyses

Elastic analyses of laminates that are based on plate elements are widely used and accurate for many
design predictions. Extended laminar sheets comprising thin plies do indeed very nearly satisfy the condi-
tions of strain distribution necessary for the reduced degrees of freedom in beam (or plate) theory to be
sufficient.

As shown in this paper, modeling delamination fracture is, however, much more challenging. In multiply
delaminated beams as well as other more complex structures, delaminations propagate in mixed mode, of-
ten predominantly in shear (modes II and III). Crack propagation, even in the absence of a through-thick-
ness reinforcement (stitching, pins, etc.), will therefore be very strongly and commonly influenced by
contact forces and crack face friction. Other crack wake effects, such as bridging by fibers or craze fibrils,
might also be important. The tractions imposed on the fracture surfaces by such effects will depend, pos-
sibly sensitively, on the mixed mode crack displacement vector; and therefore accurate prediction of the
crack displacement becomes a prerequisite to a full quantitative model of delamination.
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The question of whether plate or beam theory methods can deal with quantitative delamination analysis
turns on the success of estimates of root rotations, which control the accuracy of crack displacement predic-
tions near crack tips. Our current work and work in the literature (Andrews et al., 2005; Sun and Pandey,
1994; Pandey and Sun, 1996) encourages the view that reasonably simple root rotation corrections can in-
deed restore accuracy. If so, beam theory may be not only useful but even the preferred method, especially
for plane problems, including many common experimental tests, since it yields straightforward, relatively
small numerical problems and, in many important cases and limits, highly instructive analytical results.

Competition in accurate delamination modeling will come from modern cohesive element methods,
which are extensions of finite element formulations to include elements that can introduce bridging and
contact tractions in convenient ways. Cohesive models are an attractive, physically based formulation of
nonlinear crack tip and crack wake processes, very well suited to complex 3D configurations with arbitrary
mode mixtures. They have a growing record of successful simulations of experiments (e.g., Remmers et al.,
2003; Yang and Cox, 2004). However, accurate cohesive model analyses of complex laminated structures
may comprise 106 degrees of freedom and do not yield analytical results, even in limits. Beam theory
and computationally intensive cohesive element methods may prove complementary.

6.2. Towards structural design concepts

Many configurations of loads and boundary conditions arise in structures other than the cantilever case
studied here. Nevertheless, the cantilever case suggests some principles concerning the role of the multiplic-
ity of delaminations in structural performance that may prove generally applicable to cases of mixed shear
and bending.

Assume that residual strength following delamination damage declines as the size of the cracks increases
(e.g. Fig. 4). Then the results for uniformly spaced cracks (Eq. (12)) suggest that, to enhance residual
strength, material conditions that favour greater number of cracks uniformly distributed through a structure
are to be avoided. On the other hand, if the cracks are confined to a band of limited width, then resistance to
growth rises with their number. Protection against long cracks might therefore be sought by deliberately
introducing multiple weaker planes within a limited band in the material. Of course, the effect of such a strat-
egy on other failure routes must also be considered. For instance by tailoring the material for increased resid-
ual strength the ductility of the structure is reduced, leading to a more brittle failure of the structure.

The case study of the system of two cracks shows that interaction effects are strong. Cases in which one
crack shields the other and cases in which it leads to accelerated growth in its partner can be found, depend-
ing on where the two cracks reside in the laminate. The possibility of acceleration implies that design and
life predictions based on solutions for a single crack cannot be safe.

In many cases studied here, the possibility of crack face contact arises. Long zones of crack wake contact
and friction can therefore be expected to be common in structural problems involving shear and bending.
The friction zones will not generally be confined to a near-tip region, in particular one that is sufficiently
small that friction effects could be incorporated by modifying the critical value of the energy release rate.
Rather, the friction contact zone will vary in extent (and possibly in the number of contact domains) with
the crack size and its relation to other cracks. The contact zones must be calculated explicitly. Similar re-
marks will apply to treating through-thickness reinforcement, should it be present. Work is in progress to
investigate these topics.
7. Conclusions

A model has been presented that allows for the analysis of laminated plates with multiple delaminations
deforming in cylindrical bending. The model utilizes the assumptions of classical beam theory, which
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neglects shear and near-tip deformation, and accounts for non-frictional contact between the crack sur-
faces. It has been applied to a cantilever beam with multiple through-width edge delaminations subject
to a concentrated load at its free end. Contact has been simulated using different approaches, uncon-
strained-, constrained- and spring-contact, where the names reflect the approximation used to describe the
displacement field. Finite element analyses applied to a two delamination system show that the spring-con-
tact model is the most accurate; however utilizing it results in a non-linear problem and thus requires a par-
tially numeric solution while the other models result in closed form solutions. The two simpler
approximations give upper and lower bounds of the energy release rate determined by the spring-contact

approximation. In the case of the mode ratio, however they give results that are often qualitatively different
and at times also incorrect. These problems are expected to be compounded in systems of more delamin-
ations with more complicated states of contact. Thus when accurate results are required, the simplified con-
tact approximations should only be used as general bounds and as a first approximation of the regions of
contact for the iterative solution of the spring-contact model.

Analysis of the energy release rate and mode ratio of the delaminations has revealed several key insights
into the behavior of multiply delaminated systems. When delamination growth is considered, a discontinu-
ity in the energy release rate and mode ratio is found when the delaminations reach the same length. This
discontinuity leads to instantaneous shielding or amplification of the energy release rate, eliciting behaviors
such as local snap-back and snap-through instabilities, hyperstrength, crack pull-along and crack arrest. All
of these behaviors are strongly dependent on and controlled by the through-thickness spacing of the
delaminations. The energy release rates of the delaminations are also amplified or shielded when the delam-
inations are not of the same length, again depending on the through-thickness positions of the
delaminations. These effects show some similarity to the effects previously observed in the interaction of
microcracks or of main cracks with clouds of microcracks in infinite media, which can represent damage
in concrete and coarse grain ceramics (Hutchinson, 1987; Rose, 1986; Rubinstein, 1985; Kachanov,
1986; Brencich and Carpinteri, 1996). However in the problem considered here, strong modifications in
the results and more complex behaviors are observed due to the finiteness of the structure.

The through-thickness positions of the delaminations also control the sensitivity of a system of equal
length delaminations to length perturbations. When the delaminations are equally spaced the equality of
length is stable (i.e. simultaneous growth of the delaminations) leading to a more ductile failure; when they
are not, the equality of length is often, but not always, unstable resulting in a more brittle response (i.e.
growth of one or a limited number of delaminations).

While the present study was limited to a system of only two unequal length delaminations, the proposed
model could be applied to analyze systems with a general number of delaminations following the procedure
described in Section 2. Behaviors similar to those of the two-delamination system are expected in a system
with many delaminations, resulting in a macro structural response with a saw-tooth appearance, with re-
peated increases and decreases in critical load as the critical delamination tip grows with and past other
delamination tips in the system. Different boundary and loading conditions from those studied here are ex-
pected to have a mostly quantitative effect on the results and can be easily solved using the same model and
solution procedure. With minimal modification, friction acting in the regions of contact can also be con-
sidered. Its effect will be additional shielding of the energy release rate at the delamination tips.
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Appendix A. Derivation of general solutions for system of coupled differential equations

In this appendix, the general solutions for the system of differential equations, Eqs. (7) and (8) are de-
rived, for one free segment and for 2 and 3 beam segments in contact.

A.1. Single beam segment

For a single beam segment A the governing differential equations, Eqs. (7) and (8), are
EIAwA;xxxx ¼ 0;

EAAuA;xx ¼ 0
ðA:1Þ
the general solutions of this system of equation is
wAðxÞ ¼ C1 þ C2xþ C3x2 þ C4x3;

uAðxÞ ¼ C5 þ C6x;
ðA:2Þ
where the C�s are unknown constants of integration.

A.2. Two beam segments in contact

For two beam segments A and B in contact, the governing differential equations, Eqs. (7) and (8) are
EIAwA;xxxx þ kA;BðwA � wBÞ ¼ 0;

EAAuA;xx ¼ 0;

EIBwB;xxxx � kA;BðwA � wBÞ ¼ 0;

EABuB;xx ¼ 0;

ðA:3Þ
where kA,B is given by Eq. (5). Solutions of the form:
wAðxÞ ¼ A1 e
jx; wBðxÞ ¼ A2 e

jx ðA:4Þ

are sought. The resulting algebraic equation, determined by substitution of Eq. (A.4) into Eqs. (A.3) and
subsequent elimination of A1 or A2 is
j4ðj4 þ 4b4
A;BÞejx ¼ 0; ðA:5Þ
where
bA;B ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
kA;B
4

1

EIA
þ 1

EIB

� �
4

s
. ðA:6Þ
The relationship between the unknown constants A1 and A2 is
A2

A1

¼ EIB
kA;B

j4 þ 1. ðA:7Þ
The 8 roots of Eq. (A.5) are
j ¼ 0; 0; 0; 0;�ð1� ibA;BÞ; ðA:8Þ
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where i ¼
ffiffiffiffiffiffiffi
�1

p
. The general solution of this system of differential equations is therefore
wAðxÞ ¼ EIA ebA;BxðC1 cos bA;Bxþ C2 sin bA;BxÞ

þ EIA e�bA;BxðC3 cos bA;Bxþ C4 sin bA;BxÞ þ C5x3 þ C6x2 þ C7xþ C8; ðA:9Þ

uAðxÞ ¼ C9 þ C10x

wBðxÞ ¼ EIB ebA;BxðC1 cos bA;Bxþ C2 sin bA;BxÞ;

þ EIB e�bA;BxðC3 cos bA;Bxþ C4 sin bA;BxÞ þ C5x3 þ C6x2 þ C7xþ C8 ðA:10Þ

uAðxÞ ¼ C11 þ C12x.
A.3. Three beam segments in contact

The governing differential equations for three beam segments A, B and C in contact are
EIAwA;xxxx þ kA;BðwA � wBÞ ¼ 0;

EAAuA;xx ¼ 0;

EIBwB;xxxx þ kB;CðwB � wCÞ ¼ kA;BðwA � wBÞ;

EABuB;xx ¼ 0;

EICwC;xxxx � kB;CðwB � wCÞ ¼ 0;

EACuC;xx ¼ 0.

ðA:11Þ
The k�s are given by Eq. (A.5). Solutions of the form
wAðxÞ ¼ A1 e
jx; wBðxÞ ¼ A2 e

jx; wCðxÞ ¼ A3 e
jx ðA:12Þ
are sought. The resulting algebraic equation for determination of j is
j4ðj8 þ aA;B;Cj
4 þ cA;B;CÞejx ¼ 0; ðA:13Þ
where
aA;B;C ¼ kA;B
1

EIA
þ 1

EIB

� �
þ kB;C

1

EIB
þ 1

EIC

� �
;

cA;B;C ¼ kA;BkB;C
1

EIAEIB
þ 1

EIAEIC
þ 1

EIBEIC

� �
.

ðA:14Þ
The relationships between the unknown constants A1, A2 and A3 are
A2

A3

¼ EIC
kB;C

j4 þ 1;

A1

A3

¼ EIBEIC
kA;BkB;C

j8 þ 1

kA;C
ðEIB þ EICÞ þ

1

kB;C
EIC

� �
j4 þ 1.

ðA:15Þ
The 12 roots of Eq. (A.13) are
j ¼ 0; 0; 0; 0;�ð1� iÞ 1

2
aA;B;C � 1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2A;B;C � 4cA;B;C

q� �1=4

. ðA:16Þ
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The general solutions of the system of equations is therefore:
wAðxÞ ¼ C1 þ C2xþ C3x2 þ C4x3

þ q4e
ffiffiffiffi
q24p xðC5 sin

ffiffiffiffiffi
q2

4
p

xþ C6 cos
ffiffiffiffiffi
q2

4
p

xÞ þ q3 e
ffiffiffiffi
q14p xðC7 sin

ffiffiffiffiffi
q1

4
p

xþ C8 cos
ffiffiffiffiffi
q1

4
p

xÞ
þ q3 e

� ffiffiffiffi
q14p x C9 sin

ffiffiffiffiffi
q1

4
p

xþ C10 cos
ffiffiffiffiffi
q1

4
p

x
� �

þ q4 e
� ffiffiffiffi

q24p xðC11 sin
ffiffiffiffiffi
q2

4
p

xþ C12 cos
ffiffiffiffiffi
q2

4
p

xÞ;
wBðxÞ ¼ C1 þ C2xþ C3x2 þ C4x3

þ q6 e
ffiffiffiffi
q24p xðC5 sin

ffiffiffiffiffi
q2

4
p

xþ C6 cos
ffiffiffiffiffi
q2

4
p

xÞ þ q5 e
ffiffiffiffi
q14p xðC7 sin

ffiffiffiffiffi
q1

4
p

xþ C8 cos
ffiffiffiffiffi
q1

4
p

xÞ
þ q5 e

� ffiffiffiffi
q14p xðC9 sin

ffiffiffiffiffi
q1

4
p

xþ C10 cos
ffiffiffiffiffi
q1

4
p

xÞ þ q6 e
� ffiffiffiffi

q24p xðC11 sin
ffiffiffiffiffi
q2

4
p

xþ C12 cos
ffiffiffiffiffi
q2

4
p

xÞ;
wCðxÞ ¼ C1 þ C2xþ C3x2 þ C4x3

þ e
ffiffiffiffi
q24p xðC5 sin

ffiffiffiffiffi
q2

4
p

xþ C6 cos
ffiffiffiffiffi
q2

4
p

xÞ þ e
ffiffiffiffi
q14p xðC7 sin

ffiffiffiffiffi
q1

4
p

xþ C8 cos
ffiffiffiffiffi
q1

4
p

xÞ
þ e�

ffiffiffiffi
q14p xðC9 sin

ffiffiffiffiffi
q1

4
p

xþ C10 cos
ffiffiffiffiffi
q1

4
p

xÞ þ e�
ffiffiffiffi
q24p xðC11 sin

ffiffiffiffiffi
q2

4
p

xþ C12 cos
ffiffiffiffiffi
q2

4
p

xÞ;

ðA:17Þ
where
q1; q2 ¼
1

8
aA;B;C �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2A;B;C � 4kA;BkB;CcA;B;C

q
;

q3 ¼
16EIBEICq2

1

kA;BkB;C
� 4

EIBkB;C þ EICkB;C þ EICkA;B
kA;BkB;C

q1 þ 1;

q4 ¼
16EIBEICq2

2

kA;BkB;C
� 4

EIBkB;C þ EICkB;C þ EICkA;B
kA;BkB;C

q2 þ 1;

q5 ¼ 1� EIC
kB;C

q1; q6 ¼ 1� EIC
kB;C

q2.

ðA:18Þ
Appendix B. Solutions for n equal length cracks

The solution for the system of n equal length cracks is determined by application of the boundary con-
ditions Eq. (10) and continuity conditions Eq. (11). The general solutions for the intact beam segment, with
index k = 0, and each of the beam segments, with indices k = 1, . . . ,n + 1, in the delaminated region using
the unconstrained-contact model are given by Eq. (A.2):
wkðxÞ ¼ Ck;1 þ Ck;2xþ Ck;3x2 þ Ck;4x3 ðB:1Þ

the 4(n + 1) constants of integration are
C0;1 ¼ C0;2 ¼ 0; C0;3 ¼
1

2

PL
EI0

; C0;4 ¼ � 1

6

P
EI0

;

Ck;1 ¼
P
6
ð2aþ LÞðL� aÞ2

Xnþ1

j¼1

1

EIj
� 1

EI0

 !
;

Ck;2 ¼ � P
2
ðLþ aÞðL� aÞ

Xnþ1

j¼1

1

EIj
� 1

EI0

 !
;

Ck;3 ¼
PL
2

Xnþ1

j¼1

1

EIj
; C0;4 ¼ � P

6

Xnþ1

j¼1

1

EIj
; k ¼ 1; . . . ; nþ 1.

ðB:2Þ
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The constants for each of the segments in the cracked region, Ck,1, Ck,2, Ck,3, Ck,4, are identical, thus the
deflections of the beam segments in the cracked region are the same. Therefore the other two contact
approximations, the constrained-contact and the spring-contact yield the same solution.

The solution for the beam with n equal length cracks could also be determined by considering in the
cracked region an equivalent intact beam with a reduced bending moment of inertia I� ¼

Pnþ1
j¼1 Ij. This is

also true in general under the assumptions of the constrained-contact model when the n cracks have arbi-
trary lengths. In this case, the beam is divided up into segments, each with a reduced bending moment of
inertia determined by the sum of the bending moments of inertia of the delaminated sublaminates forming
that segment.

The total potential energy P of the system is
P ¼ 1

6

P 2L3

EI0
� P 2a3

6

Xnþ1

j¼1

1

EIj
� 1

EI0

 !
. ðB:3Þ
Appendix C. Stability analysis of a cantilever beam with n equal length, equally spaced cracks

The stability of the equality of length of n equally spaced cracks in a cantilever beam is analyzed here
using the assumptions of the unconstrained-contact model. If a positive perturbation Da of crack m is con-
sidered, the energy release rate for crack m is
GmEh

P 2
¼ 6mðN � mÞ aþ Da

h

� �2 v3a
6 þ 6v1a

3ðaþ DaÞ3 þ 3v2ðaþ DaÞ6

v1a3 þ v2ðaþ DaÞ3

 !
; ðC:1Þ
where
v1 ¼ 6ðm4 � 2m3N þ m2ðN 2 � 3Þ þ 3mN � N 2Þ;

v2 ¼ 3ð3m2 � 3mN þ N 2Þ;

v3 ¼ �N 4

3
þ 2

3
v1 þ

4

3
v2

� �
N 2 � v1

v2
3
� 3

� �
;

N ¼ nþ 1.
The energy release rate for each of the remaining n-1 cracks is
GiEh

P 2
¼ 6

N 2

N � 2

a
h

� �2 v4a
6 þ v5a

3ðaþ DaÞ3 þ v6ðaþ DaÞ6

v1a3 þ v2ðaþ DaÞ3

 !
; ðC:2Þ
where
v4 ¼ v1 � 1

3
N 2 þ 1

3
v2 þ v1 þ 1

� �
;

v5 ¼ � 2

3
N 2ðN 2 � v2Þ þ 2ðv2 þ v1v2 þ 3v1Þ;

v6 ¼ � 2

3
N 2 N 2 � 5

2
v2

� �
þ 4v2 þ 5v1.
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The ratio of energy release rates, Eq. (C.1) by Eq. (C.2), taking the limit as Da ! 0 is
Gm

Gi
¼ mðN � mÞðN � 2Þ

N 2

v3 þ 6v1 þ 3v2
v4 þ v5 þ v6

� �
¼ ðn2 � mnþ 2n� mþ 1þ m2Þðn� 1Þ

ð�m2 þ mnþ m� 1Þðnþ 1Þ2
. ðC:3Þ
The equality of length is stable if, for n P 2, Gm=Gi < 1. This condition is checked by verifying it at the
extremum in terms of m and at the boundaries for m = 1, n. This yields
Gmext

Gi
¼ 3

nþ 3
;
G1

Gi
¼ Gn

Gi
¼ 1� n

ðnþ 1Þ2
ðC:5Þ
which are always less than 1 for n P 2.
If a negative perturbation Da of crack m is considered then the energy release rate for crack m is
GmEh

P 2
¼ a� Da

h

� �2
144N 2a6

ð3ðN � 2Þða� DaÞ3 þ ðN þ 6Þa3Þ2
. ðC:6Þ
The energy release rate for each of the remaining n � 1 cracks is
GiEh

P 2
¼ 6

a
h

� �2 v7½ðN þ 6Þa6 þ 6ðN � 2Þa3ða� DaÞ3� þ 9v8ða� DaÞ6

ð3ðN � 2Þða� DaÞ3 þ ðN þ 6Þa3Þ2
; ðC:7Þ
where
v7 ¼ ðN 2 þ 2N þ 3Þ;
v8 ¼ ðN 3 � N þ 2Þ.
The ratio of energy release rates, Eq. (C.6) by Eq. (C.7), taking the limit as Da ! 0 is
Gm

Gi
¼ 144N 2

v7ð7N þ 6Þ þ 9v8
¼ 3nþ 3

2nþ 3
. ðC:8Þ
The equality of length is stable if, for n P 2, Gm=Gi > 1, which clearly is satisfied by Eq. (C.8). Thus the
equality of length is stable for n equally spaced cracks.
Appendix D. Energy release rate expressions for a cantilever beam with two delaminations

The expressions for the normalized energy release rate for the upper and lower delamination, GU and GL

for the cantilever beam of Fig. 5 are presented here. When the upper delamination is longer than the lower,
aU > aL Fig. 5a, the solution shows that there is contact along the delamination surfaces. The normalized
energy release rates for the upper and lower delamination have been determined in closed form for the
unconstrained- and constrained-contactmodels. The energy release rate for the spring-contact model is deter-
mined through the numerical solution of the problem and application of Eq. (9a).

For the constrained-contact model the energy release rates for aU > aL are
GUEh

P 2
¼ 18

aU
h

� �2 H 3ð1� H 3Þ
3H 2

3 � 3H 3 þ 1

� �
; ðD:1Þ

GLEh

P 2
¼ 18

aL
h

� �2 H 5ð1� H 3Þð1� H 3 � H 5Þ
ð3H 2

3 � 3H 3 þ 1Þð1� 3ðH 3 þ H 5ÞðH 5H 3 þ 1Þ þ 3ðH 3 þ H 5Þ2Þ

 !
; ðD:2Þ



884 M.G. Andrews et al. / International Journal of Solids and Structures 43 (2006) 855–886
where H3 = h3/h and H5 = h5/h. For the unconstrained-contact model the energy release rates for aU > aL
are
Fig. D
(a) un
GUEh

P 2
¼ 18

aU
h

� �2 H 3ð1� H 3Þðc1ðaU=hÞ
6 þ c2ðaU=hÞ

3ðaL=hÞ3 þ c3ðaL=hÞ
6Þ

ðc4ðaU=hÞ
3 þ c5ðaL=hÞ

3Þ2

 !
; ðD:3Þ

GLEh

P 2
¼ 18

aL
h

� �2 ðaU=hÞ6H 5ð1� H 3Þ3ð1� H 3 � H 5Þc6
ðc4ðaU=hÞ

3 þ c5ðaL=hÞ
3Þ2

 !
; ðD:4Þ
where the constants c1, . . . ,c6 depend on the through-thickness positions of the cracks and are
c1 ¼ ð3H 2
3 � 3H 3 þ 1ÞðH 2

3 þ 3H 2
5 þ 3H 3H 5 � 2H 3 � 3H 5 þ 1Þ2;

c2 ¼ 6H 5H 3
3ð1� H 3 � H 5ÞðH 2

3 þ 3H 2
5 þ 3H 3H 5 � 2H 3 � 3H 5 þ 1Þ;

c3 ¼ 3H 2
5H

2
3ð1� H 3 � H 5Þ2ðH 2

3 þ H 3 þ 1Þ;

c4 ¼ �ð3H 2
3 � 3H 3 þ 1ÞðH 2

3 þ 3H 2
5 þ 3H 3H 5 � 2H 3 � 3H 5 þ 1Þ;

c5 ¼ �3H 5H 3
3ð1� H 3 � H 5Þ.

ðD:5Þ
When the lower delamination is longer than the upper delamination, aL > aU Fig. 5b, the solution shows
that there is opening along the lower delamination face, and no contact along the upper delamination face,
namely the two upper beam segments have the same vertical deflection. Therefore, the spring- and uncon-

strained-contact models lead to the same solution. The constrained-contact model, which prevents opening,
leads to a solution that is clearly incorrect in this regime. However, as will be seen later, it is a bound of the
exact solution, which is useful for delamination configurations with more delaminations where the exact
solution is not so obvious. The energy release rates are given by Eqs. (D.1)–(D.5) with the indices of crack
positions and lengths reversed, aL ! aU, aU ! aL, H3 ! H5 and H5 ! H3.

When the delaminations have the same length, the energy release rate of each delamination when the
delaminations propagate simultaneously, GB, is given by Eq. (12).

As for the case of equal length delaminations, Fig. 3, maps can be constructed for a general through-
thickness distribution and lengths of the delaminations that show regions in which the energy release rate
.1. Maps of regions of different energy release rates for a system of two unequal length cracks (schematic of Fig. 5):
constrained model, (b) constrained model.
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of one of the cracks is higher or lower than that of the other crack. Maps for the constrained- and uncon-

strained-contact models are shown in Fig. D.1.
The maps depend on the through-thickness position of the two cracks and incorporate contours of equal

G of both cracks. The contours depend on the relative length of the two cracks. Dashed contours corre-
spond to DU = (aU � aL)/aU and are to be used when aU > aL. Solid contours correspond to
DL = (aL � aU)/aL and are to be used when aL > aU. The map in Fig. D.1a has been constructed using
the unconstrained-contact model and the map in Fig. D.1b using the constrained-contact model. A more
complicated map, depending also on the length of the cracks, can be constructed using the spring-contact

model.
The shaded region in each figure refers to cracks of the same length, DU = DL = 0, and define configu-

rations for which the energy release rate of each crack when the cracks propagate simultaneously, GB given
by Eq. (12), is maximum (the shaded region in Fig. D.1a coincides with that of Fig. 3). Points to the left or
above the contour corresponding to the relative length of the two cracks define through-thickness distribu-
tions of the cracks for which the upper crack has the higher energy release rate. Points below or to the right
of the contour define through-thickness distributions of the cracks for which the lower crack has the higher
energy release rate. The evolution of the cracks can be followed in this diagram by updating the contour
from that corresponding to the current D, to the configuration reached by the last crack growth event.
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Sridhar, N., Massabò, R., Cox, B.N., Beyerlein, I., 2002. Delamination Dynamics in Through-Thickness Reinforced Laminates with

Application to DCB Specimen. Int. J. Fracture 118, 119–144.
Suemasu, H., 1993. Postbuckling Behaviors of Composite Panels with Multiple Delaminations. J. of Compos. Mater. 27 (11), 1077–

1096.
Suemasu, H., Majima, O., 1996. Multiple Delaminations and Their Severity in Circular Axisymmetric Plates Subjected to Transverse

Loading. J. of Compos. Mater. 30 (4), 441–463.



886 M.G. Andrews et al. / International Journal of Solids and Structures 43 (2006) 855–886
Sun, C.T., Pandey, R.K., 1994. Improved method for calculating strain energy release rate based on beam theory. AIAA Journal 32
(1), 184–189.

Suo, Z.G., 1990. Delamination Specimens for Orthotropic Materials. J. Appl. Mech. 57 (3), 627–634.
Suo, Z.G., Hutchinson, J.W., 1990. Interface crack between two elastic layers. Int. J. Fract. 43 (1), 1–18.
Wang, J., Qiao, P., 2004. Interface crack between two shear deformable elastic layers. J. Mech. Phys. Solids 52, 891–905.
Williams, J.G., 1989. End Corrections for Orthotropic DCB Specimens. Composite Science and Technology 35 (4), 367–376.
Yang, Q.D., Cox, B.N., 2004. Modeling damage evolution in laminated composites containing stress concentrators, International

Journal of Solids and Structures in preparation for submission.
Zheng, S., Sun, C.T., 1998. Delamination Interaction in Laminated Structures. Eng. Frac. Mech. 59 (2), 225–240.



  

RSC PP 05–058 

 

 

 
 

Dynamic Fiber Sliding along Debonded, 
Frictional Interfaces 

 

 

Q. D. Yang,1 A. Rosakis,2 and B. N. Cox1  
 
1 Rockwell Scientific 

1049 Camino Dos Rios 
Thousand Oaks, CA  
U.S.A. 
 

2 Department of Aeronautics 
California Institute of Technology 
Pasadena, CA 
U.S.A. 

 

 

Submitted to 
The Proceedings of the Royal Society 

April 22, 2005; revised, September, 2005 

 

 



  

 

 

 

 

 

ABSTRACT 

The problem is considered of a fiber that is driven dynamically, by compression at one 

end, into a matrix.  The fiber is not initially bonded to the matrix, so that its motion is 

resisted solely by friction.  Prior work based on simplified models has shown that the 

combination of inertial effects and friction acting over long domains of the fiber-matrix 

interface give rise to behaviour that is far more complex than in the well-known static 

loading problem.  The front velocity may depart significantly from the bar wave speed 

and regimes of slip, slip/stick, and reverse slip can exist for different material choices and 

loading rates.  Here more realistic numerical simulations and detailed observations of 

dynamic displacement fields in a model push-in experiment are used to seek more 

complete understanding of the problem.  The prior results are at least partly confirmed, 

especially the ability of simple shear lag theory to predict front velocities and gross 

features of the deformation.  Some other fundamental aspects are newly revealed, 

including oscillations in the interface stresses during loading; and suggestions of 

unstable, possibly chaotic interface conditions during unloading.  Consideration of the 

experiments and two different orders of model suggest that the tentatively characterized 

chaotic phenomena may arise because of the essential nonlinearity of friction, that the 

shear traction changes discontinuously with the sense of the motion, rather than being 

associated with the details of the constitutive law that is assumed for the friction.  This 

contrasts with recent understanding of instability and ill-posedness at interfaces loaded 

uniformly in time, where the nature of the assumed friction law dominates the outcome.
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1. Introduction 

This paper will address certain aspects of the more general problem illustrated in Figure 

1.  In the general problem, a fiber that is initially bonded to a matrix is loaded 

dynamically in either tension or compression at its end, with a load that is some function 

of time.  The fiber and matrix are elastically dissimilar.  The assembly may be of plane or 

axisymmetric geometry.  Boundary conditions for the axisymmetric case may be those of 

Type I or Type II (i.e., stress or displacement conditions at the boundary of a cylindrical 

cell), as designated by Hutchinson and Jensen (Hutchinson and Jensen, 1990) to simulate 

an array of fibers; or those corresponding to an isolated fibre in a semi-infinite body.  

Boundary conditions for a plane problem may be periodic to simulate an array; or again 

those of an isolated fiber in a semi-infinite body.  A state of initial compression may exist 

across the fiber-matrix interface, e.g., due to residual thermal stresses.  The load causes 

the fiber to debond progressively from the matrix, allowing relative sliding between the 

two, which is opposed by friction.  The constitutive law of the friction may involve 

displacement, displacement rate, and the magnitude of the interface compression.  The 

debonding mechanism may result in a nonlinear process zone in the debond crack wake 

of significant length.  Friction will generally act over much longer lengths, often the 

whole domain of sliding. 

In this paper, model experiments and numerical simulations of the push-in problem 

(compressive end loading) will be used to study the particular limit that the interface is 

initially debonded (limit of zero debond toughness).  One motivation is to explore the 

connections between the physics of long range frictional sliding and shear fracture, using 

model experiments in which a reduced set of mechanisms operates.  Simultaneously, the 

question is addressed of how simply dynamic interface failure in composites can be 

represented, without loss of accuracy.  The latter query is inspired by watershed 

experiments in the static case on cylindrical fibers in a matrix (e.g., (Marshall, 1992)).  In 

the static case, shear lag analysis of the fiber/matrix debonding problem, which assumes 

Lamé-like field solutions, proves very accurate for most parameter ranges (Hutchinson 

and Jensen, 1990) and forms an immediate link to the problem of composite fracture 

(Budiansky et al., 1986; Marshall et al., 1985).  Where static shear lag models are 

accurate, analytical results usually stand independently of whether the fibers are more or 
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less compliant than the matrix and whether plane or axisymmetric conditions exist; 

preliminary shear lag analyses of the dynamic case suggest the same compass, although 

the physics are considerably more complicated than in the static case (Sridhar et al., 

2003).  The problem of Fig. 1 may also be considered as a particular case of delamination 

failure in a symmetrically laid up laminated composite, for which the plane geometry is 

directly applicable and the lamina represented by the fiber may be more or less compliant 

than the other layers.  The questions of how accurate shear lag theory might be in 

dynamic cases, and what subset of the physics of interface failure might remain 

reasonably well represented in it, are therefore of practical interest.  Issues specific to the 

push-in problem will be addressed here, including how the degrees of freedom used in 

representing displacement fields in modeling and the assumed nature of the friction law 

influence stability, front formation, front velocity, stress fields, etc. 

Friction Acting Along Bars 

Shear-lag models of the dynamic case of the problem of Fig. 1, with friction that is 

spatially and temporally uniform in magnitude (but not in sign), have revealed the 

regimes of behaviour that might be expected for an initially debonded interface (Cox et 

al., 2001; Nikitin and Tyurekhodgaev, 1990; Sridhar et al., 2003).  First, the front of the 

furthest deformation in the fiber does not travel at the longitudinal wave speed for the 

fiber, Cf, but at some other velocity that depends on the friction strength, the elastic 

mismatch, the wave speeds in the fiber and the matrix, and the loading rate.  The front 

velocity is bounded by Cf and the longitudinal wave speed in the matrix, Cm, and may be 

lower or higher than Cf.  Second, depending on the same parameters, distinct regimes of 

slip, slip and stick, and reverse slip exist, even when the load point displacement is 

monotonic.  Reverse slip refers to the condition that the relative motion of the fiber and 

matrix is opposite in sense to that of the load point.  Reverse slip is possible when the 

wave speed in the matrix is higher than that in the fiber, so that the fiber is pulled along, 

at the deformation front, by the matrix.  The domains of slip, stick, and reverse slip are 

fixed (growing similarly with time) for linearly increasing loads, but appear and 

disappear in complicated sequences for other loading cases, even those that are simple 

functions of time (e.g., step functions).  The solutions are much more complicated than 

for the same problem in static loading, where the only history dependence that affects the 
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solution is the order of any load reversals [e.g., (Marshall, 1992)].  There is even a hint 

(unproven) that the birth and death of slip, reverse slip, and stick-slip domains may be 

chaotic, with arbitrarily small changes in the load point history resulting, at later times, in 

finitely dissimilar domain patterns.  Numerical work has supported the shear lag results 

for linearly increasing loading, under the modeling conditions assumed, for most 

parameter values (Sridhar et al., 2003).  However, the strong non-linearity of the friction 

law, which may reverse sense at moving boundaries, makes accurate numerical location 

of the boundaries very challenging, even under the constraint of assumed Lamé-like 

solutions (Sridhar, Dunn, and Cox, unpublished work, 2002). 

Friction Between Half-Spaces 

The problem of an interface with no debond energy but long, possibly infinite, domains 

of friction has been studied extensively in the geometry of two remotely and uniformly 

loaded half-spaces, contacting on a plane.  Among a number of insightful articles, the 

introductory sections of (Cochard and Rice, 2000) provide an especially helpful 

summary.  Some salient results are as follows.  1) For elastically dissimilar materials 

subject to Coulomb friction, uniform slip becomes unstable and slip pulses can form 

instead, i.e., slip domains on either side of which the interface is not sliding (Adams, 

1998; Weertman, 1980).  Slip pulses can propagate in either direction, in different cases, 

and at values of the remote shear stress that are less than the friction stress.  2) Unstable 

slip is also possible for elastically homogeneous cases, but not for a simple Coulomb law.  

3) Cochard and Rice go on to distinguish instability from ill-posedness: the former exists 

when spatial perturbations to the state of slip grow in amplitude; the latter refers to the 

non-existence of solutions of any kind.  Instability does not preclude the possibility of 

uniform slip as a formal solution, given the hypothetical presence of perfectly uniform 

conditions.  Ill-posedness points to an inconsistency in the physics of the problem as 

stated.  4) Whether the interface problem exhibits ill-posedness or instability depends on 

both the degree of elastic mismatch and the nature of the assumed friction law.  The 

relevant measure of elastic mismatch is the point at which the generalized Rayleigh 

velocity (a mode of interface wave propagation found for a frictionless interface along 

which loss of contact does not occur) ceases to be defined.   Ill-posedness prevails for all 

friction coefficients when the elastic mismatch is mild (generalized Rayleigh wave 
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exists); and for friction coefficients above a modest critical value when the mismatch is 

more severe.  Thus ill-posedness is the common case.  5) Ranjith and Rice (Ranjith and 

Rice, 2001) assign blame to the simplified physics of Coulomb’s law, in particular its 

implication that friction can change discontinuously in time upon a finite change in the 

normal contact pressure.  A modified law, in which the change occurs smoothly over a 

characteristic response time, had in fact already been inferred from experiments (Prakash 

and Clifton, 1993; Prakash, 1998).  Such a law regularizes the ill-posed planar interface 

problem; and the regularized solutions continue to exhibit slip-pulse character (Cochard 

and Rice, 2000). 

The complexity seen in the Lamé-like solutions to the push-in problem of Fig. 1 has 

different physical origins to the instability and ill-posedness discussed in the last two 

paragraphs.  In the work based on Lamé-like solutions, the friction force was assumed to 

be uniform and constant, apart from sign reversals, and not influenced by changes in the 

normal compression at the interface.  Complexity arises from the effects of friction on the 

propagation of wave pulses along the fiber and matrix system, excited by the dynamic 

end loading, and is associated with the birth and death of slip, stick, and reverse slip 

domains, which is complicated by the strength of the nonlinear effects due to the sign-

reversal property of the friction.  In the problem of planar frictional interface between 

half-spaces, instability and ill-posedness are direct consequences of the assumed relation 

between friction and the normal traction, and depend strongly on whether Coulomb’s or 

another law is assumed. 

The final point from the body of work on planar interfaces that is of present relevance is 

the relation of the boundedness of slip-pulse domains to the nature of the assumed 

friction law.  Zheng and Rice (Zheng and Rice, 1998) looked at this question with a 

velocity-weakening friction law, expressed as a decrease in the coefficient of friction as 

the shear displacement rate rises.  (This law is similar to that of Prakash and Clifton, but 

expressed in inverse form, in terms of the displacement rate rather than the rate of change 

of the shear traction.)  For such a law, slip motion can occur either as a crack-like event, 

in which the interface slips simultaneously over a semi-infinite domain extending back 

from a slip front; or as a slip-pulse motion, with slip confined to finite, moving domains.  

Which case prevails (in the problem of contacting half-spaces) depends on the rate of 
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velocity weakening: if the slope of the decline is small, crack-like slip behaviour occurs; 

if it is large, slip-pulse motion occurs (Zheng and Rice, 1998). 

Effects of Interface Bonding 

A separate, major body of literature has been written on the problem of interface shear 

crack propagation in systems in which the interface is initially bonded.  The most 

pertinent results here refer to the question of allowed and preferred crack velocities.  

Energy considerations suggest that, unlike mode I cracks, which are forbidden above the 

shear wave speed, shear cracks can in principle propagate at any velocity, c, in the so-

called intersonic regime, CS < c < CL, where CS and CL are the shear and longitudinal 

wave speeds (Broberg, 1994; Burridge et al., 1979).  However, numerical studies imply a 

restrictive condition for intersonic propagation, that the crack tip process zone be diffused 

over a finite interval and not concentrated at a point, as in a classical brittle crack 

(Andrews, 1976).  In the work of Burridge et al., the velocity √2Cs assumes a special 

role: for c < CS, crack acceleration is unstable (associated with decreasing load); while 

for c > √2CS, crack acceleration is stable (increasing load). 

These early theoretical deductions have now been complemented by experiments that 

have achieved shear crack conditions for the first time in the laboratory by exploiting the 

propensity of laminated materials to confine cracks to prescribed planes (Rosakis et al., 

1999).  Specimens consisting of monolithic slabs laminated at a bonded interface as well 

as composite ply laminates have been studied.  Under appropriate dynamic loading, 

approximately mode II conditions can be maintained, in contrast to tests with a uniform 

body (free of pre-existing weak planes), where crack deflection or bifurcation would 

quickly cause a transition to mode I conditions.  The laminate experiments confirm mode 

II crack propagation in the intersonic regime and are also consistent with the predicted 

stability transition at √2CS, since the crack is observed to accelerate rapidly past the shear 

wave speed, but decelerate and achieve approximately uniform velocity at √2CS.  

Needleman has performed numerical simulations of this particular experimental 

configuration, where the driving force is a dynamic impact end-load rather than the 

remote shear loading of the early theoretical studies, and confirmed most aspects of the 

observed behaviour (Needleman, 1999).  Needleman’s model incorporates mixed mode 
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cohesive elements to represent the debonding process, with cohesive laws (traction vs. 

displacement) that feature both an initial hardening phase and a decaying tail.  These laws 

are somewhat different from that in Burridge et al., which was a purely softening law and 

for mode II displacements only.  The details of the law do affect the outcome in some 

ways.  For example, while Needleman’s simulations show the same qualitative history of 

rapid acceleration to a nearly constant velocity as seen in experiments (Rosakis et al., 

1999), the value of the final velocity generally exceeds √2CS, rather than equalling it, 

with the speed attained depending on the maximum stress assumed for the cohesive law.  

In a separate theoretical study of shear crack propagation along bi-material 

(Homalite/steel) interfaces, a large jump in terminal crack velocity was found at a certain 

prescribed load point velocity (Needleman and Rosakis, 1999).  For inferior load point 

velocities, crack propagation was limited by the Rayleigh wave speed in the Homalite 

(the slower medium); above the transition, the terminal velocity approximately doubled, 

to be near the longitudinal wave speed of the Homalite. 

While intersonic propagation is physically admissible, shear crack propagation remains 

forbidden in the velocity interval, CR < c < CS, where CR is the Rayleigh velocity.  The 

mechanism by which a crack can jump across this velocity gap involves the creation of a 

daughter crack ahead of the parent crack, which then links to the parent in an effective 

surge of crack growth (Andrews, 1976; Burridge, 1973; Gao et al., 2001).  While 

relationship of this phenomenon to slip-pulse solutions for planar frictional interfaces 

must exist, the presence of a velocity gap must be associated with presence of 

concentrations of tractions where interface debonding is taking place, which do not 

generally appear in interfaces coupled solely by friction. 

Contrasts in Physics 

Thus shear crack propagation analysis, pulse-slip solutions for the planar frictional 

interface, and Lamé-like solutions of the push-in problem with zero debond energy (Fig. 

1) all show that variable front velocities up to the maximum of the longitudinal wave 

speeds in the fiber and the matrix are physically admissible.  However, important 

distinctions arise between the different problems.  In particular, there is no analogue in 

the Lamé-like solutions of the push-in problem with zero debond energy to the velocity 
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gap in the interval (CR, CS) in fracture problems, nor any special role for the velocity 

√2CS.  Neither do direct analogues of the phenomena of instability and ill-posedness that 

have been so extensively studied for planar frictional interfaces appear in the existing 

Lamé-like solutions, since these have been developed for uniform and constant (not 

Coulomb) friction. 

Solutions in the literature for dynamic shear cracks and the initially-debonded push-in 

problem also differ in another very important way.  Even though cohesive models have 

been used for dynamic shear crack modeling, thus spreading the debond process into a 

diffuse process zone, the dimensions of this process or cohesive zone have been relatively 

small.  For example, in the simulations of Needleman (Needleman, 1999), the cohesive 

zone is ~ 1 mm (a result of the assumed parameter values in the cohesive law), while the 

crack propagates over distances of ~ 25 mm.  Behind the cohesive zone, the fracture 

surfaces remain traction free.  A small process zone representing debonding is very 

different from the conditions expected in the presence of friction, especially in mode II 

problems, where shear tractions may act over the whole cracked specimen.  While a shear 

cohesive traction enters the fracture problem in exactly the same way that a frictional 

traction would enter, the extension of cohesive modeling to friction zones that may be as 

long as the crack has not been made in dynamic fracture studies.  (Calculations for bi-

material interfaces did predict the existence of large-scale contact zones trailing the 

crack-tip (Needleman and Rosakis, 1999), but friction in these zones was not modelled.)  

Models have either treated long zones of friction in the absence of a debond process (the 

Lamé-like push-in problem or the planar frictional interface problem); or debonding as a 

relatively short process zone in the absence of long zones of friction. 

Final introductory comments are directed upon the nature of the cohesive law.  In static 

fracture of a material that is not rate dependent, only two or three degrees of freedom in 

the cohesive law have a significant influence on the fracture response (e.g., (Bao and Suo, 

1992; Cox and Marshall, 1994; Massabò and Cox, 1999)).  If the zone has finite extent, 

most characteristics of crack propagation are determined by two parameters, which may 

be taken as the critical traction in the cohesive law and the area under the law (work of 

fracture).  If the cohesive law incorporates an initial hardening phase (traction rising with 
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displacement), then the cohesive mechanism may act over the whole crack, even for very 

long cracks, in which case a third parameter, the slope of the hardening phase, controls 

crack growth (Cox and Marshall, 1994). If the cohesive mechanism exhibits rate 

dependence (excluding inertial effects), e.g., due to creep or viscosity, then one or at most 

two additional parameters, describing the rate of decay of the cohesive tractions, appear 

to suffice to predict fracture behaviour (Cox and Sridhar, 2001).  The possibilities when 

inertial effects enter may be richer.  For example, in none of the work on static fracture 

are there cases where the rate of decline of the law with increasing displacement plays a 

significant role (except as it affects the area under the curve, i.e., the work of fracture).  

Yet in dynamic studies of friction, the rate of decline of the coefficient of friction, i.e., of 

the cohesive shear traction due to friction, with displacement rate has a profound effect: it 

determines whether slip occurs in a crack-like or slip-pulse mode (Zheng and Rice, 

1998).  This and other results, including theoretical models (Lapusta and Rice, 2003) and 

novel laboratory simulations of slip-pulse motion (Xia et al., 2004), show that 

constitutive laws for dynamic friction need to be represented with more degrees of 

freedom than laws in static facture.  Inertial effects appear to manifest further details of 

the traction law in fracture behaviour. 

All of these background works have addressed some aspects of the general problem of 

Fig. 1, but they remain separate pieces of understanding, not yet connected to one 

another.  Thus large-domain friction problems have not yet embraced the influence of a 

strong bond (energetically significant crack tip process); while fracture work has not yet 

extended to very large (possibly semi-infinite) domains of friction.  Generality in the 

friction law has begun to appear only in studies devoted to friction as a phenomenon, but 

these studies imply that over-simplifying friction laws can have a strong affect on the 

possible behaviour in other systems.  And last, the most general studies of fiber push-in 

as a special problem, with general end-loading histories, remain to be undertaken. 

2. Experiments 

A model planar specimen geometry was designed to investigate dynamic fiber push-in for 

a bi-material system in which no chemical bond exists at the material interface.  A 

transparent and birefringent polymer sheet (Homalite-100), acting as a “fiber,” was 

placed between two steel plates, analogous to a “matrix” (Fig. 2).  The dynamic fiber 
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push-in process was mimicked by loading the fiber with a projectile traveling at speeds 

ranging from 10 to 40 m/sec.  The resistance of the polymer/metal interfaces to slip was 

manipulated by applying a static compressive pre-load acting perpendicular to the 

interfaces, whose value varied from 0.5 – 175 MPa. 

Discussion of the resulting deformation will refer to the coordinate system, (x1, x2), with 

the origin located at the mid-plane of the Homalite piece, at the end where it is impacted 

(Figs. 1 and 2).  The half-height of the Homalite will be denoted h.  Thus the interfaces 

lie at x2 = ± h.  The origin of time, t, is the moment of first impact. 

Materials and Specimens:  The densities and relevant wave speeds of the test materials 

are given in Table 1.  All plates were 9.5 mm thick and 82.5 mm in length.  The steel 

pieces were 50.8 mm in height.  The height, 2h, of the Homalite piece was 16.5 mm.  The 

Homalite dimensions were chosen to provide a fiber aspect ratio, defined as length 

divided by the half height, h, of 10.  The steel height was chosen to minimize the 

interactions of wave reflections from the specimen boundaries with the dynamic sliding 

process.  This assures that the case studied is equivalent to that of an isolated fiber in a 

semi-infinite body.  The pieces of the specimen were aligned and stacked vertically 

(steel/Homalite/steel) without the use of adhesive or bonding agent. 

Table 1.  Density and elastic wave speeds for the test materials 

 

 density, ρ 

(kg/m3) 

CR 

(m/s) 

CS 

(m/s) 

CL 

(m/s) 

Homalite 1230 1087 1187 2060 

steel 8000 2977 3254 5443 

Dynamic Loading and Characterization: The fiber was loaded dynamically by impacting 

its end with a 25.4 mm diameter cylindrical steel projectile, 44.5 mm in length, which 

was accelerated using a light air gun.  Projectile speeds were varied over the range 10 – 

40 m/s by varying the gun pressure.  A small steel tab was affixed to one end of the 

Homalite piece to eliminate the possibility of impact damage to the end of the relatively 

brittle polymer during dynamic loading (Fig. 2).  The dynamic sliding of the Homalite 
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relative to the steel was characterized using high-speed photography in conjunction with 

dynamic photoelasticity.  A strain gage was mounted to the surface of the steel tab to 

provide a trigger signal for the initiation of the recording of high-speed photographs 

(described below).  From sequences of images, the dynamic loading history, σ(t), of the 

fiber, the initiation time for the onset of interface sliding, and the interface slip speed 

histories were obtained. 

Dynamic photoelasticity apparatus was configured as follows.  A collimated laser beam, 

100 mm in diameter, was passed through a circular polarizer, the length of the Homalite, 

and a second polarizer to generate the photoelastic images, which were recorded using a 

high-speed digital camera (Cordin 220-16, Cordin Scientific Imaging, Salt Lake City, 

Utah, 84119).  The camera was capable of recording 16 frames.  The frames were 

recorded every few microseconds; the interframe times were varied in each experiment.  

In dynamic photoelasticity, the fringes show constant-value contours of the difference of 

principal stresses, σ1-σ2. 

2.1 Results 

General observations: 

A total of 16 experiments were conducted.  The role of impact speed (loading rate) was 

investigated at a constant static pre-load; and that of pre-load was investigated at a 

constant impact speed.  Figure 3 shows a representative high-speed isochromatic fringe 

pattern recorded during sliding in the common member of these two test sets (  

MPa, v

50(r)
22 =σ

0 = 38±2 m/s).  The approximately vertical fringes represent the stress generated 

from the impact (from the left) and propagate to the right.  Shortly behind the propagating 

front, kinks form in the fringes in angled bands.  These bands intersect the top and bottom 

interfaces, implying non-smooth variations in the interface displacement.  Among the 

many fringe patterns collected from all tests, consistency in the pattern of bands was 

imperfect.  In some images, either noise or experimental variance made it difficult to 

confirm or refute the presence of bands that might have been expected to be present 

based on their presence in other images.  In the images with better-defined fringes, two 

bands were prominent, typified by the dashed white lines in Fig. 3.  Based on changes in 

the spacing or angle of fringes before and after a band, or in the derivative of the spacing, 
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the first of these is interpreted as the beginning of a domain of increasing interface shear 

stress; the second as the point of transition to interfacial sliding.  In Fig. 3, the domain 

marked “increasing friction” (or interfacial shear stress) is clearly defined as such by the 

fringe behavior; in the domain marked “constant friction,” the fringe variations are 

consistent with this interpretation, but the implication is not as clear due to noise.  A peak 

in the fringes on the specimen mid-plane locates the onset of unloading. 

Figure 4 presents images similar to that in Fig. 3 but taken from experiments conducted 

with higher and lower static pre-loads.  The difference in the visibility of bands in these 

figures and Fig. 3 is representative.  Further inspection of Figs. 3 and 4 shows that as the 

pre-load increases, the kinking of the fringes is associated with larger distortions, 

suggesting that the onset of sliding is associated with a sharper discontinuity.  A similar 

trend was observed as the impact speed was increased.  The dynamic sliding process is 

associated with higher, more localized stresses at higher loading rates and higher static 

pre-load. 

Sliding Speeds:  

The velocity of the dominant band in each image along the interface was estimated by 

comparing its position in successive frames.  Figure 5 shows plots of the positions of the 

intersections of a symmetric pair of such bands with the top and bottom interfaces as a 

function of time for an experiment conducted with 12.5 MPa pre-load and 38 m/s impact 

speed.  The bands propagate at the same velocity on the top and bottom and the variation 

of sliding position with time is essentially linear.  This contrasts with the common case 

for shear crack propagation, where a period of acceleration of the crack tip is often 

observed, which may approach constant velocity asymptotically.  Here, the velocity of 

the bands is constant throughout the experiment, within the experimental error of 

approximately ±3% (typically on the order of ±50 m/s).  These observations were 

consistent in all of the experiments, indicating that on this scale of observation, sliding is 

a steady-state process.  In this particular experiment, the slope of the plot in Fig. 5 

indicates a sliding speed of 2050 m/s or approximately the dilatational wave speed of 

Homalite.  Model analysis (see below) suggests that these bands probably corresponded 

to the beginning of a domain of enhanced interfacial shear stress. 
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Figure 6 provides a summary of the velocities of the dominant bands measured from all 

of the experiments, plotted as a function of static pre-load.  While the data show 

substantial scatter, individual points are accurately determined (see above).  In all cases, 

the observed speeds were in excess of the shear wave speed of Homalite, i.e., greater than 

60% of the dilatational wave speed.  In general, the trend is toward decreasing sliding 

speed with increasing static pre-load.  However there is no clear functional dependence.  

Insight provided by modeling (see below) suggests that the bands identified as dominant 

in collating the data of Fig. 6 may have corresponded in some cases to the onset of 

interfacial sliding, but in other cases to the beginning of a domain of increasing 

interfacial shear stress. 

Data for all of the experiments conducted at 0.5 MPa and varying impact speed lie along 

the ordinate (the axis of sliding speed) in Fig. 6.  There was no systematic variation of 

sliding speed with impact speed, with all the measured sliding speeds being 

approximately the dilatational wave speed of Homalite. 

 

Sliding Stresses and Loading Rate: The photoelastic fringes can be equated to the local 

difference in principal stresses: 

 WNF /21 σσσ =−  (1) 

where Fσ is the stress-optic coefficient (22.6 kN/m for Homalite), N is the fringe order, 

and W is the specimen width (in the through-thickness direction, x3).  The stress along the 

center-line of the Homalite can be determined from Eq. (1) alone if the following 

conditions are met: 1) the principal stresses along the center-line act in the x1 and x2 

directions and; 2) plane stress conditions exist; and 3) strains ε22 in the x2 direction are 

negligible.  Then Eq. (1) reduces to 

σ1(1-ν) = FσN/h (2) 

where ν is Poisson’s ratio for the Homalite; and hence the stress distribution along the 

center of the fiber can be determined.  The condition of negligible strain component, ε22, 

will not be met in the presence of large compressive pre-stress.  Nevertheless, Eq. (2) 

proves useful, for the following reasons.  First, numerical simulations (see below) show 
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that, in the absence of compressive pre-stress, dynamic contributions to ε22 are very 

small; and the stress, σ1, estimated from experiments using Eq. (2) and that calculated by 

the simulations are very close.  Second, when the compressive pre-stress is large, the 

additional contribution to ε22 will be time-invariant.  Therefore, Eq. (2) can be used to 

estimate the applied loading rate, dσ1/dx1, in steady-state conditions from experimental 

data, since this involves taking a derivative.   

The variation of stress with position is found to be approximately linear, yielding a 

constant value of dσ1/dx1 for each test.  (Thus experiments and simulations (see below) 

confirm the rapid attainment of steady-state conditions in the axial stress and the proper 

application of Eq. (2).)  This steady-state value can be divided by the dilatational wave 

speed in Homalite to give a loading rate per unit time.  The loading rate rises in 

proportion to the impact speed and decreases linearly with static pre-load (Fig. 7).  When 

the coupling of the fiber and the matrix is increased, the input momentum is transferred 

more rapidly to the matrix, resulting in slower loading of the fiber. 

3. Numerical Modeling 

A computational simulation of the test was set up in a commercial finite element package 

(ABAQUS 1 ), with cohesive elements to represent interface friction.  Symmetrical 

boundary conditions (u3 = 0; τ12 = 0) were imposed along the center of the Homalite piece 

(x2 = 0) and the top surface of the steel piece.  A state of plane stress was assumed in the 

(x1, x2) plane.  Semi-infinite elements were used to prevent elastic waves bouncing back 

from the right end of the model (Fig. 8).  The cohesive elements introduce a relationship 

between the shear tractions, τint, and the sliding displacement rate, [ ]1u& , at the interface.  

The law used (Fig. 9) is intended to represent friction that is uniform and constant in 

magnitude, but an initial linear part is included to avoid numerical difficulties where the 

sense of the motion changes.  A dynamic loading history (Fig. 10), corresponding to that 

caused by the experimental impactor, was imposed as a prescribed stress, σ11(t), acting 

uniformly over the interval –h < x2 < h at the left end of the Homalite.  The simulation 

described in detail in the following had a loading rate, dσ11/dt = 31.5 MPa/µs, a rise time 

                                                 
1 ABAQUS, Inc., Pawtucket, RI 02860 
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of 6.0 µs, and linear unloading over a further 12.0 µs.  The loading rate and maximum 

stress correspond to those deduced from measurements of stress distributions at the end 

of the Homalite for the test with an impactor velocity of 39 m/s and a compressive pre-

stress, = 50 MPa.  The unloading rate was set to be half that of the loading rate in 

magnitude, which also corresponded approximately to the measured rate.  Thus the 

boundary stress was not predicted, but fitted to experiments; but all other characteristics 

of the deformation, including front velocities and the general distribution of stresses, etc., 

were predicted given only this fitted condition.  The interfacial frictional stress was 

assigned the magnitude τ

(r)
22σ

f = 40 MPa.  This would correspond to a friction coefficient of 

0.8 for the same test, if friction had obeyed Coulomb’s law in the test; but this, of course, 

may not have been the case.  The magnitude of τf was held constant in the simulations.  

Since the loading rate depends only weakly on the compressive pre-stress (Fig. 7), the 

simulation could also be interpreted as representing cases of higher compressive pre-

stress, if a lower value of the coefficient was believed to be more appropriate. (The 

calculation would be unchanged because the coefficient of friction does not enter 

explicitly into the model.) 

3.1 General Character of the Predicted Wave Deformation 

Figure 11 shows predicted contours of the principal stress difference σ1-σ2 and the shear 

stress τ12 in the Homalite at time t = 9.822 µs.  These plots and plots of stress variations 

along single lines (see below) distinguish four zones in the wave propagation.  Right-

most is the so-called head wave zone, where the interface friction stress is opposite in 

sense to that in the trailing zones.  (This change of sign is not evident in Fig. 11b, because 

of the small magnitudes of the stresses involved.)  In the head wave zone, the Homalite is 

loaded by the steel and the wave speed exceeds that of Homalite, Cf, by a factor of more 

than 2 (the factor being difficult to pinpoint numerically) but is less than that of the steel, 

Cm. 

Following the head wave zone is a linearly increasing shear stress zone, where the 

interface (friction) stress increases approximately linearly with position up to the limiting 

value, τf, given by the cohesive law.  This zone derives from the finite-sloped transition 
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from negative to positive shear stress used in the cohesive model to avoid numerical 

problems (Fig. 9).  However, domains with this character were also observed in the 

model experiments, suggesting that the law of Fig. 9 may fortuitously represent, at least 

qualitatively, the true constitutive behaviour of the interface under rising shear stress.  

The next zone is the constant friction zone, which is characterized by a suddenly and 

greatly reduced density of the contours in σ1-σ2, while the shear stress is constant at the 

value, τf. 

The last zone is associated with the unloading part of the loading history.  The contour 

lines near the interface become chaotic, which is also seen in the experiments (Figs. 3 and 

4).  In the simulation, alternating contact and separation zones exist along the interface in 

this region.  The experimental contours show similar variations, suggesting the same 

contact behaviour (although in the experiments no direct confirmation of interface 

displacements is possible). 

 

4. Stress Distributions and Front Velocities 

Comparison of the measured and predicted stress contours has shown that, even though 

the numerical model is based on an ad hoc and probably incorrect friction law, most 

aspects of the experiments appear to be reproduced.  Further insight into the physics of 

the deformation is available from other calculated and measured characteristics. 

Figures 12a – 12c show stress profiles at three different instants during the simulations of 

Fig. 11.  Figure 12a shows the axial stress along the center line of the Homalite, σ11(x1, 

0), along with a measurement from the experiment executed with impactor velocity, v0 = 

39 m/s and compressive pre-stress, = 50 MPa.  The agreement between the 

simulation and the experiment is quite close.  (See also the discussion following Eq. (2).)  

The furthest disturbance evident in this plot corresponds to the transition in Fig. 11 from 

the head wave to the domain of linearly increasing friction.  The peak axial stress along 

the center line decreases as the wave propagates, which is attributed to the dissipative 

frictional sliding process along the interface.  Invariance of the stress profile confirms the 

(r)
22σ
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attainment of steady state conditions by time 6.2 µsec, shortly after peak load is attained 

at 6.0 µsec. 

Figure 12b shows the interface shear stress at the same three instants.  The shear stress 

increases approximately linearly until the constant friction stress assigned in the cohesive 

law is reached.  It remains almost constant through the “constant friction” zone of Fig. 

11, although small oscillations are evident around the prescribed value, τf.  The unloading 

zone is dominated by high frequency, severe fluctuations in τint. 

Figure 12c shows the axial stress, σ11(x1, h), along the interface.  A knee behind the 

furthest visible disturbance corresponds to the transition from linearly increasing to 

constant interfacial stress.  In the region ahead of the knee, the loading rate of the 

material is remarkably small. 

Figure 12d illustrates further the nature of the interface fields in the chaotic unloading 

zone.  Large spikes in the fiber sliding displacement periodically reach down to the 

sliding displacement of the matrix, indicating locations of fiber/matrix stick.  Reverse slip 

is also possible for brief intervals at these locations, but is difficult to resolve in a 

numerical simulation, due to computational noise. 

The plots of Fig. 12 provide reasonably accurate information for evaluating the velocities 

of the various fronts.  Fig. 13 shows histories of the locations of fronts as functions of 

time, obtained by interpolating measurements of the locations of the corresponding 

features in Fig. 12.  The leading edge of the head wave is not shown, since it could not be 

accurately discerned. 

The velocity, V2, of the transition to the linearly increasing friction zone is evaluated from 

both the earliest significant axial stress along the center line and the earliest significant 

shear stress along the interface.  The former gives, V2 = 1.04Cf; while the latter yields a 

slightly lower value V2 = 0.98Cf.  To within reasonable uncertainty, neither is 

significantly different from the wave speed in Homalite. 

The front of the constant friction zone can only be determined accurately from the 

interface stresses, either the knee in the axial stress or the onset of the shear plateau (Fig. 
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12b).  The inferred wave velocity is V3 = 0.87 ± 0.02 Cf, the error reflecting the 

difference between the two sources and the axial stress implying the higher value. 

The front associated with the onset of unloading is best identified by the peak in the axial 

stress along the center line of the Homalite (Fig. 12c).  The velocity takes the value V4 = 

0.98 ± .02 Cf, once again close to the wave speed in the Homalite. 

The velocity estimates can be approximately confirmed by analysing the bands or kinks 

in the predicted stress contours, which propagate from locations on the interface at which 

a transition (non-smooth behaviour) is present in the displacement fields.  Two bands are 

traced by dashed lines in Fig. 11, emanating approximately from the fronts associated 

with the onset of linearly increasing friction and constant friction (sliding).  The angles 

subtended by the lines to the interface, αi, i = 2 and 3, are given by sinαi = CS/Vi, where 

CS is the shear wave speed in the Homalite.  While difficulty arises in locating the bands 

on some contours, the fitted values sinα2 ≈ 0.45 and sinα3 ≈ 0.6 are probably correct to 

within 20%.  These values yield V2 = (2.2 ± 0.4)CS and V3 = (1.6 ± 0.3)CS, in reasonable 

agreement with the more accurate values deduced above from Fig. 12.  The boundary of 

the domain of chaotic fields is also marked by a dashed line in Fig. 11, which emanates 

from the unloading front.  The angle subtended by this line, α4 ≈ arcsin 0.35, yields Vchaos 

= (3.0 ± 0.3)CS.  This high implied velocity is consistent with the observation in the 

simulations that the onset of chaos is delayed somewhat after the beginning of unloading, 

but the chaotic zone tends subsequently to catch up with the unloading front, and 

therefore propagates at a velocity exceeding that of the unloading front, or approximately 

Cf. 

The different velocities predicted for the onset of sliding and the beginning of the domain 

of increasing interface shear help understand the distribution of the data in Fig. 6.  Some 

uncertainty arose in identifying bands in fringe images (as described above), so that the 

nature of the interfacial phenomenon corresponding to a particular band was not always 

clear.  Given the velocities predicted by the model, those data in Fig. 6 falling close to Cf 

would be associated with the beginning of the domain of rising interfacial shear stress, 

while other data would be associated with the sliding front. 
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Since the front of the constant friction zone propagates at slightly different velocities at 
the interface and along the center of the Homalite, the configuration of contours must 
change with time.  Other contour plots at different times (not shown) show that the nearly 
parallel, vertical contours in the “linearly increasing friction” and “constant friction” 
zones of Fig. 11 do move apart more rapidly at the center of the Homalite than at the 
interfaces, which causes them to bow out towards the head wave with increasing time.  
The same fringe divergence was seen (via dynamic photoelasticity) in the model 
experiments.  In both the simulations and the experiments, the divergence is limited in 
magnitude and the stress contours remain at angles less than approximately 10° from 
vertical during passage of the deformation along the length of the test piece. 

Other changes with time are: 1) The zone of chaotic contours grows into the interior of 
the Homalite with time.  In fact, other contour plots from the same simulations as 
reported in Fig. 11 reveal that chaotic behaviour does not appear at all until the elapse of 
approximately 8 µs.  2) The constant friction stress zone shrinks with time, since V4 > V3, 
indicating that the unloading wave propagates faster than waves ahead of it. 

 

5.0 Results from Shear Lag Models based on Lamé Fields 

For the static problem of Fig. 1 and related thermal and mechanical problems, many 
useful results have been obtained using shear lag analysis and the assumption that the 
fiber deformation fields are separable in x and the transverse or radial variables; and that 
fields are simple, known functions of the latter (Cox, 1990; Cox et al., 1990; Hutchinson 
and Jensen, 1990; Marshall et al., 1985; McCartney, 1987).  Analysis shows that these 
approximations give quite accurate predictions of the end load vs. the end displacement 
as long as the slip distance is long compared to the fiber diameter (or fiber width in a 
plane problem) (Hutchinson and Jensen, 1990).  The fiber fields are well represented; and 
also the matrix fields, provided the volume fraction of fibers is not too small.  Since these 
results in the static case are simple and have enlightened many aspects of the mechanics 
and engineering principles of designing fiber-reinforced materials, the question of their 
utility in the dynamic case is of interest. 

For dynamic end loading that increases linearly in time and friction that is uniform and 
constant, shear lag analysis predicts that the deformation will propagate in two or three 
domains, depending on the value taken by the following three dimensionless parameters 
(Sridhar et al., 2003): 

 
dt

d
h
Ck 0ff στ

=  
m

f

C
CC =  ( ) m
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where f is the fiber volume fraction.  The specimen of Fig. 2 and the simulations have 
lateral boundary conditions that are not periodic and therefore are not in strict 
correspondence with the shear lag model of Sridhar et al., but correspondence can still be 
sought, using the dimensions of the specimen, by setting f = 8.25/50.8 = 0.162.  The 
domains predicted by shear lag modeling consist of different interfacial conditions: slip, 
stick, and reverse slip.  For the case of the simulations reported in the last section, k = 
0.317, C = 0.378, and φ = 0.0043.  Shear lag modeling predicts, for these values, that the 
deformation during the linearly rising part of the loading will comprise a stick zone and a 
slip zone (see Appendix A).  Furthermore, the interface friction stress in the stick zone is 
negative and has a very small magnitude, 0.036 MPa (see Eq. (A.6)).  The sign is 
negative because the matrix (steel), having the higher wave speed, is pulling the fiber 
along in this zone.  The magnitude is small because the volume fraction of the fiber is 
small, so that the stresses in the matrix remain small, the spatial derivative remains small, 
and therefore the friction stress remains small.  For the case studied, the shear lag model 
predicts (Appendix A) that the head wave front will propagate at V1 = 2.6 Cf. 

A further prediction of the shear lag model is that, if the fiber volume fraction rises, then 
the interface shear stress in the head wave zone will exceed the friction stress in 
magnitude and reverse slip will occur (consider Fig. A.1 as the parameter φ rises).  The 
head wave zone would no longer be a stick zone.   

Figure 11 broadly confirms the predictions concerning the head wave zone.  The zone is a 
stick zone (no slip), the interface shear stress is negative and very small in magnitude, 
and the front velocity, while not well determined, is consistent with the value 2.6 Cf. 

The zone of linearly increasing friction in Fig. 11 has no analogue in the shear lag results 
of Sridhar et al., because in that particular modeling, the friction stress was assumed to 
change sign with reversing slip direction as a step function.  The zone of linearly 
increasing friction in Fig. 11 arises from the linear friction stress regime at small 
displacements in the law of Fig. 9.  The constant friction zone of Fig. 11 is equivalent to 
the slip zone in the shear lag model.  The front of the constant friction zone is predicted 
in the shear lag model to propagate at 0.73 Cf.  This is less than the velocity, V3 = 0.87 Cf, 
computed in the simulations of Fig. 11.  An interesting question is whether the two 
models would agree in the predicted front velocity for higher fiber volume fractions, 
equivalent lateral boundary conditions, and as the linearly varying domain in the 
constitutive law of Fig. 9 shrinks in extent. 

If it is assumed that the friction stress value used in the shear lag model would vary with 
compressive pre-stress according to Coulomb’s law, then a prediction of the variation of 
front velocities with compressive pre-stress can be made.  Two such predictions for the 
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velocity of the sliding front, V3, have been superimposed on Fig. 6.  The rates of change 
of the friction stress correspond to assuming a coefficient of friction of 0.1 or 0.4.  The 
trends of the curves are not inconsistent with the weakly defined declining trend in the 
data, especially when those data lying at Cf, which are believed to correspond to the front 
of increasing interfacial shear stress, are excluded. 

6.0 Possible Chaotic Behaviour 

The noisy behaviour appearing in the unloading zone in the simulations does not appear 
to a numerical artefact, but rather a consequence of the modeling assumptions and the 
physics of the problem.  If it were due to Gibbs’ phenomenon, i.e., numerical ringing at a 
near-discontinuity in the solution, it would not be confined to the vicinity of the interface 
(note, for example, the smoothness of the axial stress at the center-line of the Homalite, 
Fig. 12a); nor to the unloading zone, since non-smoothness of equal strength exists in the 
fields at other fronts (zone boundaries). 

The noisy behaviour is not associated with Coulomb’s law, since this was not the 
constitutive assumption of the model.  In fact, the friction law assumed (Fig. 9), which 
contains no relation between the friction stress and the normal pressure, is simpler than 
that used in most studies of either stability or ill-posedness in problems of slip between 
half-spaces.  For the same reason, the predicted phenomenon cannot be directly related to 
Poisson’s effect, even though Poisson’s ratio was nonzero in the simulations. 

The fact that the noisy behaviour is confined to the unloading zone, while the 
deformation propagates smoothly at a range of speeds in other zones, has no obvious 
analogue in any prior studies of instability.  The closest to a hint of similar behaviour is in 
incomplete and unpublished results for the shear lag modeling described by (Sridhar et 
al., 2003).  Attempts to trace solutions for linear unloading that follows linear loading 
lead to apparently complex patterns of the birth and death of slip, stick, and reverse-slip 
zones, as the unloading wave overtakes deformation of earlier origin.  The possibility is 
suggested (but not yet thoroughly researched) that arbitrarily small changes in the loading 
history causing finite changes in the subsequent pattern of slip, stick, and reverse-slip 
zones.  In the shear lag problem, the only possible source of instability or complexity is 
the strong nonlinearity associated with the change in sign of the friction stress when the 
direction of interfacial slip changes.  While the analysis is incomplete, the suggestion of 
chaotic behaviour in the shear lag model provokes the speculation that the noisy 
behaviour seen during unloading in the experiments and the numerical simulations is also 
an example of chaos.   

Shear lag modeling also highlights the role, in the possible generation of chaotic 
behaviour, of the coupling of wave motions between the fiber and the matrix.  For a fiber 
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in a rigid matrix, where the fiber deformation is modified by interfacial friction tractions 
that depend only on its own motion, stable and well-behaved solutions can be mapped out 
systematically for quite complex loading and unloading histories, e.g., by the method of 
characteristics (Nikitin and Tyurekhodgaev, 1990).  This method is not useful when the 
fiber motion is coupled to that of a matrix. 

Numerical solution of the shear lag problem, e.g., numerical solving of difference 
equations subject to the constraint that displacement fields are Lamé-like, is not 
enlightening, because the rapid births and deaths of different zones are quickly obscured 
in numerical noise at the fronts. 

The similarity of the predicted domains of chaotic behaviour and those measured in the 
model experiments is very eye-catching (Figs. 4 and 11), but the conditions assumed for 
the interface are unlikely to be the same in the two cases.  In particular, the friction law of 
Fig. 9 is an idealization that is likely to be an oversimplification of the true friction 
behaviour in the experiments (although the experimental law is not known in detail).  
This suggests that the putative existence of chaotic behaviour is not especially sensitive 
to details of the friction law, but could be a consequence of unloading with any friction 
law that possesses the strong nonlinearity of sign reversal. 

 

7.0 Conclusions 

Comparing the characteristics of model planar experiments, numerical simulations, and 
shear lag modeling leads to the following inferences about the push-in problem of interest 
(Fig. 1), for a bi-linear sequence of loading and unloading. 

1. The broad characteristics of the deformation in the fiber, exclusive of shock 
waves, can be predicted at least qualitatively by simple shear lag models, in which the 
displacements are reduced to Lamé fields.  The shear lag solutions have the advantage of 
proposing clearly defined zones of different slip behaviour, which while present in both 
the experiments and the numerical simulations, are not so easily identified in them 
without prior knowledge.  For engineering studies of dynamic deformation in composites 
reinforced by fibers, rods, or stitches, shear lag results will convey at least the trends of 
dynamic response at the macroscopic level.  For example, the dynamic fiber end 
displacement is likely to be described quite well by shear lag theory, since those fine 
details of the push-in (or pullout) phenomenon that shear lag theory misses are unlikely to 
strongly influence an quantity such as the end displacement, which is derived from 
integrated strains. 
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2. For the given geometrical conditions and loading rate, shear lag modeling 
correctly predicts the system of stick followed by slip found in the numerical simulations 
and model experiments, even though the details of the assumed or actual friction laws are 
likely to be different in all three.  One infers that the pattern of zones is mainly 
determined by the interplay of stress waves of different speeds in the fiber and the matrix 
and is fairly insensitive to the friction constitutive law. 

3. The speeds of fronts (or the boundaries between zones) are fairly well predicted 
by shear lag modeling, but more consistent between the numerical simulations and the 
model experiments.  Shear lag modeling could be expected to be a better approximation 
as the volume fraction of the fibers rises. 

4. As far as shear lag theory is accurate, results found here for plane geometry 
should be equally applicable to axisymmetric conditions, which are a useful 
approximation to composites of cylindrical fibers. 

5. The literature is replete with analyses of frictional sliding between half-spaces 
under uniform far-field velocity conditions.  For that problem, the presence of ill-
posedness, instability, pulse and crack-like slip systems, etc., depends strongly on the 
nature of the friction law (see Introduction).  The present study considers non-uniform 
(time dependent) loading, which yields results that are not accounted for by the prior 
literature.  Complex behaviour, which may be chaotic, arises during unloading, but not at 
other stages of the deformation, in both the experiments and the numerical solutions.  
This behaviour appears to be a consequence of the strong nonlinearity associated with the 
sign reversal in the frictional tractions with slip direction and is not sensitive to the details 
of the friction constitutive law. 

6. The results that some characteristics of engineering relevance, especially the fiber 
end displacement and the pattern and velocity of sliding fronts, are insensitive to details 
of the friction law (being so similar in the experiments, numerical modeling, and shear 
lag analysis) also contrasts with the literature on shear crack propagation.  One would 
expect that as the frictional traction rises in magnitude, or a large debond energy is 
included in the problem, the fiber push-in problem would begin to manifest the complex 
dependence seen for shear cracks.  At the same time, the conditions required for shear lag 
analysis to be accurate would be lost. 

7. Changing the compressive contact pressure in the experiments has quantitative 
but not qualitative effect on the deformation patterns. 
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Appendix — results from shear lag analysis 

The following results are reproduced from (Sridhar et al., 2003) and apply to the 

fiber/matrix geometry of Fig. 1 when friction is uniform and constant and the fiber is 

subjected to a linearly increasing end load.  For this problem, three cases arise in the 

solutions, viz., cases where domains of slip occur, cases where domains of slip and stick 

occur, and cases where domains of slip and reverse slip occur.  Figure A.1 shows how 

which of these cases prevails depends on the loading rate and material parameters of the 

problem.  The parameter 

 
dt

d
h
ck 0ff στ

=  (A.1) 

represents the loading rate, with cf the longitudinal wave speed in the fiber (Homalite), τf 

the constant friction stress, and dσ0/dt the rate of increase of the stress at the fiber end.  

With the subscripts f and m referring to the fiber and matrix, respectively, the parameters 

C and φ are defined by 
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with ( ) ( )(( ))iiiii 2111ˆ µµµ −+−= EE , i = m or f; and Ei, µi, and ρi, i = m or f, denoting 

Young’s modulus, Poisson’s ratio, and the density. 

The case of the test shown in Figs. 3, 10, and 11, i.e., for 38 m/s impact speed, falls into 

the regime of stick/slip in the map of Fig. A.1.  The front of the stick zone advances at a 

speed V1 given by 
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while the front at which slip begins advances at a speed V3 given by the root of a cubic 

equation in η3 = V3/cf: 
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Analysis shows that η3 has only one real positive root which always lies in (0,1), whereas 

η1 can clearly exceed unity.  The interfacial friction stress in the stick zone is: 
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22

3
2
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where η3 has been obtained by solving Eqn. (A.5).  This expression for the friction stress 

always satisfies |τ | < |τf|.  
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Figure 1.  Schematic of a general problem of fiber/matrix debonding, under dynamic 
end loading, with possible crack wake friction. 
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Figure 2:  Planar test specimen under static
pre-load applied to the top and bottom plates
of the fixture.
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Figure 3.  Representative image from a dynamic sliding experiment (38 m/s impact
speed, 50 MPa static pre-load).  (The constancy of the interface shear stress in the
region labeled “τ constant” is consistent with the fringe pattern, but not well resolved
experimentally above the noise.  It is marked so because of modeling results.  The
labels of the other domains are clearly implied by the nature fringe patterns.) 
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Figure 4.  Fringe patterns obtained at low and high values of the static pre-load (as 
marked). 
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Figure 7: Variation of loading rate with
magnitude of static compressive pre-
load. 
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Figure 5: A plot of the location of
sliding onset vs. time for a specimen
impacted at 40 m/s with a static pre-
load of 12.5 MPa. 
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Figure 8:  Mesh for numerical simulations. 
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Figure 12.  Stress and displacement profiles from numerical simulations.  (a) axial stress,
σ11, along the center line of Homalite (heavy curve is experimental data); (b) shear stress,
τ12; (c) axial stress, σ11, along the interface; and (d) axial particle velocity in the Homalite
(fiber) and steel (matrix) along the interface.  
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